Skip to content

Commit 4d2f952

Browse files
Circle CICircle CI
Circle CI
authored and
Circle CI
committed
CircleCI update of dev docs (2626).
1 parent 0c1c078 commit 4d2f952

File tree

183 files changed

+732676
-732668
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

183 files changed

+732676
-732668
lines changed
Binary file not shown.
Binary file not shown.
-289 Bytes
Loading
-152 Bytes
Loading
Loading
-201 Bytes
Loading
969 Bytes
Loading
Loading
972 Bytes
Loading
Loading
-1015 Bytes
Loading
Loading
Loading
Loading
Loading
-202 Bytes
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
-451 Bytes
Loading
246 Bytes
Loading
Loading
Loading
Loading
Loading
Loading
-22 Bytes
Loading
164 Bytes
Loading
Loading

master/_modules/ot/gromov/_gw.html

+18-18
Original file line numberDiff line numberDiff line change
@@ -132,11 +132,11 @@ <h1>Source code for ot.gromov._gw</h1><div class="highlight"><pre>
132132

133133
<span class="sd"> Where :</span>
134134

135-
<span class="sd"> - :math:`\mathbf{C_1}`: Metric cost matrix in the source space</span>
136-
<span class="sd"> - :math:`\mathbf{C_2}`: Metric cost matrix in the target space</span>
137-
<span class="sd"> - :math:`\mathbf{p}`: distribution in the source space</span>
138-
<span class="sd"> - :math:`\mathbf{q}`: distribution in the target space</span>
139-
<span class="sd"> - `L`: loss function to account for the misfit between the similarity matrices</span>
135+
<span class="sd"> - :math:`\mathbf{C_1}`: Metric cost matrix in the source space.</span>
136+
<span class="sd"> - :math:`\mathbf{C_2}`: Metric cost matrix in the target space.</span>
137+
<span class="sd"> - :math:`\mathbf{p}`: Distribution in the source space.</span>
138+
<span class="sd"> - :math:`\mathbf{q}`: Distribution in the target space.</span>
139+
<span class="sd"> - `L`: Loss function to account for the misfit between the similarity matrices.</span>
140140

141141
<span class="sd"> .. note:: This function is backend-compatible and will work on arrays</span>
142142
<span class="sd"> from all compatible backends. But the algorithm uses the C++ CPU backend</span>
@@ -151,39 +151,39 @@ <h1>Source code for ot.gromov._gw</h1><div class="highlight"><pre>
151151
<span class="sd"> Parameters</span>
152152
<span class="sd"> ----------</span>
153153
<span class="sd"> C1 : array-like, shape (ns, ns)</span>
154-
<span class="sd"> Metric cost matrix in the source space</span>
154+
<span class="sd"> Metric cost matrix in the source space.</span>
155155
<span class="sd"> C2 : array-like, shape (nt, nt)</span>
156-
<span class="sd"> Metric cost matrix in the target space</span>
156+
<span class="sd"> Metric cost matrix in the target space.</span>
157157
<span class="sd"> p : array-like, shape (ns,), optional</span>
158158
<span class="sd"> Distribution in the source space.</span>
159159
<span class="sd"> If let to its default value None, uniform distribution is taken.</span>
160160
<span class="sd"> q : array-like, shape (nt,), optional</span>
161161
<span class="sd"> Distribution in the target space.</span>
162162
<span class="sd"> If let to its default value None, uniform distribution is taken.</span>
163163
<span class="sd"> loss_fun : str, optional</span>
164-
<span class="sd"> loss function used for the solver either &#39;square_loss&#39; or &#39;kl_loss&#39;</span>
164+
<span class="sd"> Loss function used for the solver either &#39;square_loss&#39; or &#39;kl_loss&#39;.</span>
165165
<span class="sd"> symmetric : bool, optional</span>
166166
<span class="sd"> Either C1 and C2 are to be assumed symmetric or not.</span>
167167
<span class="sd"> If let to its default None value, a symmetry test will be conducted.</span>
168168
<span class="sd"> Else if set to True (resp. False), C1 and C2 will be assumed symmetric (resp. asymmetric).</span>
169169
<span class="sd"> verbose : bool, optional</span>
170-
<span class="sd"> Print information along iterations</span>
170+
<span class="sd"> Print information along iterations.</span>
171171
<span class="sd"> log : bool, optional</span>
172-
<span class="sd"> record log if True</span>
172+
<span class="sd"> Record log if True.</span>
173173
<span class="sd"> armijo : bool, optional</span>
174-
<span class="sd"> If True the step of the line-search is found via an armijo research. Else closed form is used.</span>
175-
<span class="sd"> If there are convergence issues use False.</span>
174+
<span class="sd"> If True, the step of the line-search is found via an armijo search. Else closed form is used.</span>
175+
<span class="sd"> If there are convergence issues, use False.</span>
176176
<span class="sd"> G0: array-like, shape (ns,nt), optional</span>
177-
<span class="sd"> If None the initial transport plan of the solver is pq^T.</span>
177+
<span class="sd"> If None, the initial transport plan of the solver is pq^T.</span>
178178
<span class="sd"> Otherwise G0 must satisfy marginal constraints and will be used as initial transport of the solver.</span>
179179
<span class="sd"> max_iter : int, optional</span>
180-
<span class="sd"> Max number of iterations</span>
180+
<span class="sd"> Max number of iterations.</span>
181181
<span class="sd"> tol_rel : float, optional</span>
182-
<span class="sd"> Stop threshold on relative error (&gt;0)</span>
182+
<span class="sd"> Stop threshold on relative error (&gt;0).</span>
183183
<span class="sd"> tol_abs : float, optional</span>
184-
<span class="sd"> Stop threshold on absolute error (&gt;0)</span>
184+
<span class="sd"> Stop threshold on absolute error (&gt;0).</span>
185185
<span class="sd"> **kwargs : dict</span>
186-
<span class="sd"> parameters can be directly passed to the ot.optim.cg solver</span>
186+
<span class="sd"> Parameters can be directly passed to the ot.optim.cg solver.</span>
187187

188188
<span class="sd"> Returns</span>
189189
<span class="sd"> -------</span>
@@ -264,7 +264,7 @@ <h1>Source code for ot.gromov._gw</h1><div class="highlight"><pre>
264264

265265
<span class="k">if</span> <span class="ow">not</span> <span class="n">nx</span><span class="o">.</span><span class="n">is_floating_point</span><span class="p">(</span><span class="n">C10</span><span class="p">):</span>
266266
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span>
267-
<span class="s2">&quot;Input structure matrix consists of integer. The transport plan will be &quot;</span>
267+
<span class="s2">&quot;Input structure matrix consists of integers. The transport plan will be &quot;</span>
268268
<span class="s2">&quot;casted accordingly, possibly resulting in a loss of precision. &quot;</span>
269269
<span class="s2">&quot;If this behaviour is unwanted, please make sure your input &quot;</span>
270270
<span class="s2">&quot;structure matrix consists of floating point elements.&quot;</span><span class="p">,</span>

master/_sources/auto_examples/backends/plot_dual_ot_pytorch.rst.txt

+40-40
Original file line numberDiff line numberDiff line change
@@ -195,26 +195,26 @@ Estimating dual variables for entropic OT
195195

196196
.. code-block:: none
197197
198-
Iter: 0, loss=0.20204949002247302
199-
Iter: 10, loss=-19.280160148558775
200-
Iter: 20, loss=-30.567874987030468
201-
Iter: 30, loss=-35.151316321027515
202-
Iter: 40, loss=-37.83916433937388
203-
Iter: 50, loss=-39.101012589887894
204-
Iter: 60, loss=-39.769128850689675
205-
Iter: 70, loss=-40.14293192992
206-
Iter: 80, loss=-40.209100602299934
207-
Iter: 90, loss=-40.25757599015733
208-
Iter: 100, loss=-40.27467643168675
209-
Iter: 110, loss=-40.28036559784292
210-
Iter: 120, loss=-40.28349709996101
211-
Iter: 130, loss=-40.285093682279374
212-
Iter: 140, loss=-40.28592700498707
213-
Iter: 150, loss=-40.28645833308449
214-
Iter: 160, loss=-40.2868274997363
215-
Iter: 170, loss=-40.28709895511043
216-
Iter: 180, loss=-40.28731251255663
217-
Iter: 190, loss=-40.2874807478744
198+
Iter: 0, loss=0.202049490022473
199+
Iter: 10, loss=-19.638326466943862
200+
Iter: 20, loss=-30.72704216650675
201+
Iter: 30, loss=-35.27578567378329
202+
Iter: 40, loss=-37.980242759466826
203+
Iter: 50, loss=-39.59946841604584
204+
Iter: 60, loss=-40.1603378250191
205+
Iter: 70, loss=-40.509522418595274
206+
Iter: 80, loss=-40.58265534387766
207+
Iter: 90, loss=-40.63298504629522
208+
Iter: 100, loss=-40.64778917467728
209+
Iter: 110, loss=-40.65249154126749
210+
Iter: 120, loss=-40.6553819728475
211+
Iter: 130, loss=-40.65675787022022
212+
Iter: 140, loss=-40.657476105996466
213+
Iter: 150, loss=-40.65794484779828
214+
Iter: 160, loss=-40.658279443754125
215+
Iter: 170, loss=-40.65852676980854
216+
Iter: 180, loss=-40.65871971171536
217+
Iter: 190, loss=-40.658875505800786
218218
219219
220220
@@ -319,25 +319,25 @@ Estimating dual variables for quadratic OT
319319
.. code-block:: none
320320
321321
Iter: 0, loss=-0.0018442196020623663
322-
Iter: 10, loss=-19.489961278333244
323-
Iter: 20, loss=-30.23588633005069
324-
Iter: 30, loss=-34.81483628908168
325-
Iter: 40, loss=-37.56310559827427
326-
Iter: 50, loss=-38.903224800000885
327-
Iter: 60, loss=-39.58890908096657
328-
Iter: 70, loss=-39.96864839940656
329-
Iter: 80, loss=-40.067879312969175
330-
Iter: 90, loss=-40.132293665491126
331-
Iter: 100, loss=-40.15394647149833
332-
Iter: 110, loss=-40.16411621223928
333-
Iter: 120, loss=-40.16835381642544
334-
Iter: 130, loss=-40.170330415583564
335-
Iter: 140, loss=-40.17119413421853
336-
Iter: 150, loss=-40.17164213441122
337-
Iter: 160, loss=-40.17189100126094
338-
Iter: 170, loss=-40.17203774844194
339-
Iter: 180, loss=-40.17212962936345
340-
Iter: 190, loss=-40.17219050531965
322+
Iter: 10, loss=-19.754000811648837
323+
Iter: 20, loss=-30.46925040523962
324+
Iter: 30, loss=-34.78656396011775
325+
Iter: 40, loss=-37.70509387644338
326+
Iter: 50, loss=-39.34567647298549
327+
Iter: 60, loss=-39.95406884964521
328+
Iter: 70, loss=-40.33816852310141
329+
Iter: 80, loss=-40.451478406578254
330+
Iter: 90, loss=-40.50853175598522
331+
Iter: 100, loss=-40.526794582157635
332+
Iter: 110, loss=-40.535098863701585
333+
Iter: 120, loss=-40.53819903244734
334+
Iter: 130, loss=-40.53960000636185
335+
Iter: 140, loss=-40.54020999546969
336+
Iter: 150, loss=-40.54051667313033
337+
Iter: 160, loss=-40.54070400382129
338+
Iter: 170, loss=-40.54082205703948
339+
Iter: 180, loss=-40.5409036840701
340+
Iter: 190, loss=-40.54096844988613
341341
342342
343343
@@ -380,7 +380,7 @@ Plot the estimated quadratic OT plan
380380
381381
.. rst-class:: sphx-glr-timing
382382

383-
**Total running time of the script:** (0 minutes 12.668 seconds)
383+
**Total running time of the script:** (0 minutes 13.360 seconds)
384384

385385

386386
.. _sphx_glr_download_auto_examples_backends_plot_dual_ot_pytorch.py:

master/_sources/auto_examples/backends/plot_optim_gromov_pytorch.rst.txt

+2-2
Original file line numberDiff line numberDiff line change
@@ -395,14 +395,14 @@ classes
395395
Estimated weights : [0.29985821 0.18926744 0.51087435]
396396
True proportions : [0.5 0.3 0.2]
397397
398-
<matplotlib.colorbar.Colorbar object at 0x7f7bee427430>
398+
<matplotlib.colorbar.Colorbar object at 0x7faecf45b490>
399399
400400
401401
402402
403403
.. rst-class:: sphx-glr-timing
404404

405-
**Total running time of the script:** (0 minutes 8.372 seconds)
405+
**Total running time of the script:** (0 minutes 8.359 seconds)
406406

407407

408408
.. _sphx_glr_download_auto_examples_backends_plot_optim_gromov_pytorch.py:

0 commit comments

Comments
 (0)