From 32144495888d3f2c420db2ba3cfb602ccf173294 Mon Sep 17 00:00:00 2001 From: YaoGalteland Date: Fri, 8 Mar 2024 15:03:49 +0100 Subject: [PATCH] fix some math formation --- book/src/design/gadgets/decomposition.md | 11 +++++++---- 1 file changed, 7 insertions(+), 4 deletions(-) diff --git a/book/src/design/gadgets/decomposition.md b/book/src/design/gadgets/decomposition.md index e1daef24c5..8389056c4d 100644 --- a/book/src/design/gadgets/decomposition.md +++ b/book/src/design/gadgets/decomposition.md @@ -73,9 +73,9 @@ To optimize short range check on 4 and 5 bits, we extend the K-bit lookup table These are loaded into the following lookup table: $$ -\begin{array}{|c|c|c|c|} +\begin{array}{|c|c|c|l|} \hline - table_{idx} & table_x & table_y & table_{range\_check\_tag} \\\hline + table_{idx} & table_x & table_y & table_{range-check-tag} \\\hline 0 & x_{P[0]} & y_{P[0]} & 0 \\\hline 1 & x_{P[1]} & y_{P[1]} & 0 \\\hline \vdots & \vdots & \vdots & \vdots \\\hline @@ -91,6 +91,9 @@ $$ \end{array} $$ + + + ## Optimized short range check on 4 and 5 bits The 4 and 5 bits variant of the lookup decomposition introduces two selectors $q_\mathit{range\_check\_4}$ and $q_\mathit{range\_check\_5}$. We can calculate $q_\mathit{range\_check}$ to see if the 4-bit and 5-bit checks are activated. @@ -112,8 +115,8 @@ We have two lookup input expressions: $$q_\mathit{lookup} \cdot q_\mathit{range\_check}\cdot \textsf{word} $$ $$q_\mathit{lookup} \cdot q_\mathit{range\_check} \cdot num_\mathit{bits}$$ -Each 4-bit word $\beta$ is range-constrained by a lookup in the lookup table with $table_{range\_check\_tag} = 4$ and $table_{idx}\in \{ 2^{10},\dots, 2^{10} + 2^{4}-1\}$. -Each 5-bit word $\gamma$ is range-constrained by a lookup in the lookup table with $table_{range\_check\_tag} = 5$ and $table_{idx}\in \{ 2^{10} + 2^{4},\dots, 2^{10} + 2^{4} + 2^{5} - 1\}$. +Each 4-bit word $\beta$ is range-constrained by a lookup in the lookup table with $table_{range-check-tag} = 4$ and $table_{idx}\in \{ 2^{10},\dots, 2^{10} + 2^{4}-1\}$. +Each 5-bit word $\gamma$ is range-constrained by a lookup in the lookup table with $table_{range-check-tag} = 5$ and $table_{idx}\in \{ 2^{10} + 2^{4},\dots, 2^{10} + 2^{4} + 2^{5} - 1\}$. The region layout for the lookup decomposition shows below.