-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlinks_cluster.py
251 lines (223 loc) · 10.3 KB
/
links_cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
"""Links online clustering algorithm.
Reference: https://arxiv.org/abs/1801.10123
"""
import logging
import numpy as np
from scipy.spatial.distance import cosine
class Subcluster:
"""Class for subclusters and edges between subclusters."""
def __init__(self, initial_vector: np.ndarray, store_vectors: bool = False):
self.input_vectors = [initial_vector]
self.centroid = initial_vector
self.n_vectors = 1
self.store_vectors = store_vectors
self.connected_subclusters = set()
def add(self, vector: np.ndarray):
"""Add a new vector to the subcluster, update the centroid."""
if self.store_vectors:
self.input_vectors.append(vector)
self.n_vectors += 1
if self.centroid is None:
self.centroid = vector
else:
self.centroid = (self.n_vectors - 1) / \
self.n_vectors * self.centroid \
+ vector / self.n_vectors
def merge(self,
subcluster_merge: 'Subcluster',
delete_merged: bool = True):
"""Merge subcluster_merge into self. Update centroids."""
if self.store_vectors:
self.input_vectors += subcluster_merge.input_vectors
# Update centroid and n_vectors
self.centroid = self.n_vectors * self.centroid \
+ subcluster_merge.n_vectors \
* subcluster_merge.centroid
self.centroid /= self.n_vectors + subcluster_merge.n_vectors
self.n_vectors += subcluster_merge.n_vectors
try:
subcluster_merge.connected_subclusters.remove(self)
self.connected_subclusters.remove(subcluster_merge)
except KeyError:
logging.warning("Attempted to merge unconnected subclusters. "
"Merging anyway.")
for sc in subcluster_merge.connected_subclusters:
sc.connected_subclusters.remove(subcluster_merge)
if self not in sc.connected_subclusters and sc != self:
sc.connected_subclusters.update({self})
self.connected_subclusters.update(subcluster_merge.connected_subclusters)
if delete_merged:
del subcluster_merge
class LinksCluster:
"""An online clustering algorithm."""
def __init__(self,
cluster_similarity_threshold: float,
subcluster_similarity_threshold: float,
pair_similarity_maximum: float,
store_vectors=False
):
self.clusters = []
self.cluster_similarity_threshold = cluster_similarity_threshold
self.subcluster_similarity_threshold = subcluster_similarity_threshold
self.pair_similarity_maximum = pair_similarity_maximum
self.store_vectors = store_vectors
def predict(self, new_vector: np.ndarray) -> int:
"""Predict a cluster id for new_vector."""
if len(self.clusters) == 0:
# Handle first vector
self.clusters.append([Subcluster(new_vector, store_vectors=self.store_vectors)])
return 0
best_subcluster = None
best_similarity = -np.inf
best_subcluster_cluster_id = None
best_subcluster_id = None
for cl_idx, cl in enumerate(self.clusters):
for sc_idx, sc in enumerate(cl):
cossim = 1.0 - cosine(new_vector, sc.centroid)
if cossim > best_similarity:
best_subcluster = sc
best_similarity = cossim
best_subcluster_cluster_id = cl_idx
best_subcluster_id = sc_idx
if best_similarity >= self.subcluster_similarity_threshold: # eq. (20)
# Add to existing subcluster
best_subcluster.add(new_vector)
self.update_cluster(best_subcluster_cluster_id, best_subcluster_id)
assigned_cluster = best_subcluster_cluster_id
else:
# Create new subcluster
new_subcluster = Subcluster(new_vector, store_vectors=self.store_vectors)
cossim = 1.0 - cosine(new_subcluster.centroid, best_subcluster.centroid)
if cossim >= self.sim_threshold(best_subcluster.n_vectors, 1): # eq. (21)
# New subcluster is part of existing cluster
self.add_edge(best_subcluster, new_subcluster)
self.clusters[best_subcluster_cluster_id].append(new_subcluster)
assigned_cluster = best_subcluster_cluster_id
else:
# New subcluster is a new cluster
self.clusters.append([new_subcluster])
assigned_cluster = len(self.clusters) - 1
return assigned_cluster
@staticmethod
def add_edge(sc1: Subcluster, sc2: Subcluster):
"""Add an edge between subclusters sc1, and sc2."""
sc1.connected_subclusters.add(sc2)
sc2.connected_subclusters.add(sc1)
def update_edge(self, sc1: Subcluster, sc2: Subcluster):
"""Compare subclusters sc1 and sc2, remove or add an edge depending on cosine similarity.
Args:
sc1: Subcluster
First subcluster to compare
sc2: Subcluster
Second subcluster to compare
Returns:
bool
True if the edge is valid
False if the edge is not valid
"""
cossim = 1.0 - cosine(sc1.centroid, sc2.centroid)
threshold = self.sim_threshold(sc1.n_vectors, sc2.n_vectors)
if cossim < threshold:
try:
sc1.connected_subclusters.remove(sc2)
sc2.connected_subclusters.remove(sc1)
except KeyError:
logging.warning("Attempted to update an invalid edge that didn't exist. "
"Edge remains nonexistant.")
return False
else:
sc1.connected_subclusters.add(sc2)
sc2.connected_subclusters.add(sc1)
return True
def merge_subclusters(self, cl_idx, sc_idx1, sc_idx2):
"""Merge subclusters with id's sc_idx1 and sc_idx2 of cluster with id cl_idx."""
sc2 = self.clusters[cl_idx][sc_idx2]
self.clusters[cl_idx][sc_idx1].merge(sc2)
self.update_cluster(cl_idx, sc_idx1)
self.clusters[cl_idx] = self.clusters[cl_idx][:sc_idx2] \
+ self.clusters[cl_idx][sc_idx2 + 1:]
for sc in self.clusters[cl_idx]:
if sc2 in sc.connected_subclusters:
sc.connected_subclusters.remove(sc2)
def update_cluster(self, cl_idx: int, sc_idx: int):
"""Update cluster
Subcluster with id sc_idx has been changed, and we want to
update the parent cluster according to the discussion in
section 3.4 of the paper.
Args:
cl_idx: int
The index of the cluster to update
sc_idx: int
The index of the subcluster that has been changed
Returns:
None
"""
updated_sc = self.clusters[cl_idx][sc_idx]
severed_subclusters = []
connected_scs = set(updated_sc.connected_subclusters)
for connected_sc in connected_scs:
connected_sc_idx = None
for c_sc_idx, sc in enumerate(self.clusters[cl_idx]):
if sc == connected_sc:
connected_sc_idx = c_sc_idx
if connected_sc_idx is None:
raise ValueError(f"Connected subcluster of {sc_idx} "
f"was not found in cluster list of {cl_idx}.")
cossim = 1.0 - cosine(updated_sc.centroid, connected_sc.centroid)
if cossim >= self.subcluster_similarity_threshold:
self.merge_subclusters(cl_idx, sc_idx, connected_sc_idx)
else:
are_connected = self.update_edge(updated_sc, connected_sc)
if not are_connected:
severed_subclusters.append(connected_sc_idx)
for severed_sc_id in severed_subclusters:
severed_sc = self.clusters[cl_idx][severed_sc_id]
if len(severed_sc.connected_subclusters) == 0:
for cluster_sc in self.clusters[cl_idx]:
if cluster_sc != severed_sc:
cossim = 1.0 - cosine(cluster_sc.centroid,
severed_sc.centroid)
if cossim >= self.sim_threshold(cluster_sc.n_vectors,
severed_sc.n_vectors):
self.add_edge(cluster_sc, severed_sc)
if len(severed_sc.connected_subclusters) == 0:
self.clusters[cl_idx] = self.clusters[cl_idx][:severed_sc_id] \
+ self.clusters[cl_idx][severed_sc_id + 1:]
self.clusters.append([severed_sc])
def get_all_vectors(self):
"""Return all stored vectors from entire history.
Returns:
list
list of vectors
Raises:
RuntimeError
if self.store_vectors is False (i.e. there are no stored vectors)
"""
if not self.store_vectors:
raise RuntimeError("Vectors were not stored, so can't be collected")
all_vectors = []
for cl in self.clusters:
for scl in cl:
all_vectors += scl.input_vectors
return all_vectors
def sim_threshold(self, k: int, kp: int) -> float:
"""Compute the similarity threshold.
This is based on equations (16) and (24) of the paper.
Args:
k: int
The number of vectors in a cluster or subcluster
kp: int
k-prime in the paper, the number of vectors in another
cluster or subcluster
Returns:
float
The similarity threshold for inclusion in a cluster or subcluster.
"""
s = (1.0 + 1.0 / k * (1.0 / self.cluster_similarity_threshold ** 2 - 1.0))
s *= (1.0 + 1.0 / kp * (1.0 / self.cluster_similarity_threshold ** 2 - 1.0))
s = 1.0 / np.sqrt(s) # eq. (16)
s = self.cluster_similarity_threshold ** 2 \
+ (self.pair_similarity_maximum - self.cluster_similarity_threshold ** 2) \
/ (1.0 - self.cluster_similarity_threshold ** 2) \
* (s - self.cluster_similarity_threshold ** 2) # eq. (24)
return s