forked from octaviamd/micm_fall2022
-
Notifications
You must be signed in to change notification settings - Fork 0
/
workshop_r_code.R
499 lines (397 loc) · 20.6 KB
/
workshop_r_code.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
##############################################################################################
##This code represents instructional material, created by Octavia Dancu for ##
##the MiCM workshop. Please do not distribute this without express instructor permission. ##
##############################################################################################
#Download your data!
uvm_counts<-read.table("/Users/octaviadancu/Downloads/UVM_count_data.txt", stringsAsFactors=FALSE, header=TRUE, sep="\t")
uvm_clin<-read.table("/Users/octaviadancu/Downloads/uvm_clinical_data.txt", stringsAsFactors=FALSE, header=TRUE, sep="\t")
#for windows, it will look something like this!
uvm_counts<-read.table("C:\\Users\\ariana\\Downloads\\UVM_count_data.txt", stringsAsFactors=FALSE, header=TRUE, sep="\t")
uvm_clin<-read.table("C:\\Users\\ariana\\Downloads\\uvm_clinical_data.txt", stringsAsFactors=FALSE, header=TRUE, sep="\t")
#uvm_clin<-uvm_clin[-1,]
#let's take a quick first look at our datasets to get a sense of what we're working with!
dim(uvm_counts)
dim(uvm_clin)
str(uvm_counts)
str(uvm_clin)
#here's a quick example on how to subset your dataframe
#to get the first 10 rows and first two columns of the clinical data:
a<-uvm_clin[1:10,1:2]
uvm_clin[1:4,1:3]
a<-uvm_clin$gender
a
a<-uvm_clin$bcr_patient_barcode
install.packages("ggplot2")
library("ggplot2")
#let's have a quick example of how to generate a scatter plot in R with ggplot2
ggplot(uvm_counts, aes(x=uvm_counts$DNMT3A, y=uvm_counts$DNMT3B)) + geom_point()
#here's a barplot representing eye color across the uvm cohort
ggplot(uvm_clin, aes(uvm_clin$eye_color))+geom_bar()
#histogram
ggplot(uvm_clin, aes(uvm_clin$age_at_initial_pathologic_diagnosis)) + geom_histogram()
#boxplot
ggplot(uvm_clin, aes(x=uvm_clin$eye_color, y=uvm_clin$age_at_initial_pathologic_diagnosis))+geom_boxplot()
#violin plot
ggplot(uvm_clin, aes(x=uvm_clin$eye_color, y=uvm_clin$age_at_initial_pathologic_diagnosis))+geom_violin()
#density plot
ggplot(uvm_clin, aes(uvm_clin$age_at_initial_pathologic_diagnosis)) +
geom_density()
####################################################################
install.packages("ggpubr")
library(ggpubr)
#global p-value with anova:
p<-ggplot(iris, aes(x=Species, y=Sepal.Length))+geom_boxplot()
p
p+ stat_compare_means(method = "anova")
a<-c("setosa", "virginica")
a
#what if we want to make pairwise comparisons?
my_comparisons <- list( c("setosa", "virginica"), c("setosa", "versicolor"), c("virginica", "versicolor") )
my_comparisons
#let's add the global pvalue on the plot as well!
p+stat_compare_means(comparisons = my_comparisons)
p+stat_compare_means(comparisons = my_comparisons)+ stat_compare_means(method = "anova")
#is there anything off with this?
#what do we want to change with this to make the labels clearer?
p+stat_compare_means(comparisons = my_comparisons)+ stat_compare_means(method = "anova", label.y = 9.5)
#let's store the plot we made as an object named fig
fig<-p+stat_compare_means(comparisons = my_comparisons)+ stat_compare_means(method = "anova", label.y = 9.5)
#what if we wanted to say that setosa is the reference, and we want to see if there is a significant
#difference between the sepal length of the other two groups vs the reference?
p+stat_compare_means(label = "p.signif", method = "t.test",
ref.group = "setosa")
#I want my significance asterisks to be in red!
p+stat_compare_means(label = "p.signif", method = "t.test",
ref.group = "setosa", color="red")
#https://www.r-bloggers.com/2017/06/add-p-values-and-significance-levels-to-ggplots/
####################################################################
#error bars and standard deviation represented:
#mean standard deviation
ggerrorplot(data = iris,
desc_stat = "mean_sd",
y = "Sepal.Length",
x = "Species")
#but what if we want to see the underlying data?
ggerrorplot(data = iris,
desc_stat = "mean_sd",
y = "Sepal.Length",
x = "Species",
add = "jitter")
#here's how to add error bars!
ggerrorplot(data = iris,
y = "Sepal.Length",
x = "Species",
add = "jitter", error.plot = "errorbar")
#very nice! but what about some color to differentiate the groups visually a bit better?
ggerrorplot(data = iris,
y = "Sepal.Length",
x = "Species",
color="Species",
add = "jitter", error.plot = "errorbar")
#to change the color scheme used:
ggerrorplot(data = iris,
y = "Sepal.Length",
x = "Species",
color="Species",
add = "jitter", error.plot = "errorbar", palette=c("black", "pink", "purple"))
#now let's see how to paste together plots in R to make a multi-panel figure!
#let's first save our new figure as fig2
fig2<-ggerrorplot(data = iris,
y = "Sepal.Length",
x = "Species",
color="Species",
add = "jitter", error.plot = "errorbar")
####################################################################
ggarrange(fig,fig2)
#what if we want them one on top of the other?
ggarrange(fig,fig2, ncol=1, nrow=2)
#let's add some labels!
ggarrange(fig,fig2, labels = c("A", "B"))
#https://www.r-bloggers.com/2017/07/ggplot2-easy-way-to-mix-multiple-graphs-on-the-same-page/
####################################################################
#let's save this plot in pdf
pdf(file="eye_color.pdf")
ggplot(uvm_clin, aes(x=uvm_clin$eye_color, y=uvm_clin$age_at_initial_pathologic_diagnosis))+geom_boxplot()
dev.off()
####################################################################
ggplot(uvm_counts, aes(x=uvm_counts$NSD1, y=uvm_counts$TSPAN6))+geom_point()
#let's make a dendrogram!
uvm_counts_t<-t(uvm_counts)
#keep only rows of the expression data that represent genes that are expressed
#in at least one sample (mean expression > 0)
sub_UVM <- uvm_counts_t[rowMeans(uvm_counts_t) > 0,]
#get the variance for each gene
vars <- apply(sub_UVM,1,var)
#get the 100 genes with the most variance
select <- order(vars,decreasing = T)[1:100]
sub_UVM <- sub_UVM[select,]
#to cluster:
clust_UVM<-hclust(dist(t(sub_UVM)))
plot(as.dendrogram(clust_UVM))
####################################################################
#cladogram
install.packages("ape")
library("ape")
plot(as.phylo(clust_UVM), type = "cladogram" , cex = 0.6)
dev.off()
plot(as.phylo(clust_UVM), type = "fan")
par(mar = c(2, 2, 2, 2))
plot(as.phylo(clust_UVM), type = "fan")
####################################################################
####################################################################
#fit <- survfit(Surv(time, status) ~ sex, data = lung)
require("survival")
install.packages("survminer")
library(survminer)
#let's take a look at the myeloid dataset!
head(myeloid)
#let's see if sex made a difference in terms of outcome for these patients
#now fit survival info to a curve, stratifying info based on the patients' sex
fit <- survfit(Surv(futime, death) ~ sex, data = myeloid)
#let's plot the survival curves
ggsurvplot(fit, data = myeloid, pval = TRUE)
#now, let's see if the different treatment type made a difference!
fit <- survfit(Surv(futime, death) ~ trt, data = myeloid)
ggsurvplot(fit, data = myeloid, pval = TRUE)
####################################################################
uvm_clin$gender<-factor(uvm_clin$gender, levels = c("FEMALE", "MALE"), labels = c("F", "M"))
uvm_clin$NSD1_status<-"LOW"
for(i in 1:nrow(uvm_counts)){
if(uvm_counts$NSD1[i]>=3000){
uvm_clin$NSD1_status[i]<-"MEDIUM"
}
if(uvm_counts$NSD1[i]>=3158.5){
uvm_clin$NSD1_status[i]<-"HIGH"
}
}
uvm_clin$NSD1_status<-factor(uvm_clin$NSD1_status, levels = c("HIGH", "MEDIUM", "LOW"), labels = c("H", "M", "L"))
#if there was an futime column, it would replace it with
#days_to_death. In this case, given that futime doesn't yet
#exist in uvm_clin, it is being generated and added as the
#last column of uvm_clin
uvm_clin$futime<-uvm_clin$days_to_death
#making a fustat column filled with 1s. 1 means that the
#patient is not censored
uvm_clin$fustat<-c(1)
for(i in 1:nrow(uvm_clin)){
if(uvm_clin$futime[i]=="[Not Applicable]"){
#this patient is still alive last time we checked
uvm_clin$futime[i]<-uvm_clin$days_to_last_followup[i]
#censor this patient after the last follow-up, we don't know when they will die/if they died
#after the last check up
uvm_clin$fustat[i]<-0
}
}
surv_object <- Surv(time = as.numeric(uvm_clin$futime), event = uvm_clin$fustat)
fit1<- survfit(surv_object ~ gender, data = uvm_clin)
fit2<- survfit(surv_object ~ NSD1_status, data = uvm_clin)
#now let's use ggsurvplot function to plot the survival curves!
ggsurvplot(fit1, data = uvm_clin, pval = TRUE)
ggsurvplot(fit2, data = uvm_clin, pval = TRUE)
####################################################################
#skipping this exercise, replacing with Manhattan plots
# from the chord diagram demo here: https://jokergoo.github.io/circlize_book/book/the-chorddiagram-function.html
install.packages("circlize")
library(circlize)
set.seed(999)
mat = matrix(sample(18, 18), 3, 6)
rownames(mat) = paste0("S", 1:3)
colnames(mat) = paste0("E", 1:6)
mat
#let's see the directionality of the data a bit more clearly
df = data.frame(from = rep(rownames(mat), times = ncol(mat)),
to = rep(colnames(mat), each = nrow(mat)),
value = as.vector(mat),
stringsAsFactors = FALSE)
df
#you can plot the chord diagram using whichever dataformat is
#easier for you!
chordDiagram(mat)
chordDiagram(df)
#########################################################
#manhattan plots:
install.packages("qqman")
library(qqman)
head(gwasResults)
manhattan(gwasResults, chr="CHR", bp="BP", snp="SNP", p="P" )
manhattan(gwasResults, annotatePval = 0.01)
####################################################################
####################################################################
#considering color:
#here is an example of uniform color scheme:
ggplot(uvm_clin, aes(uvm_clin$eye_color))+geom_bar(fill="red")
ggplot(uvm_clin, aes(uvm_clin$eye_color))+geom_bar(color="red")
#what about for scatter plots? What should we do to get a scatterplot with red dots?
#fill or color?
ggplot(uvm_counts, aes(x=uvm_counts$DNMT3A, y=uvm_counts$DNMT3B)) + geom_point(fill="red")
ggplot(uvm_counts, aes(x=uvm_counts$DNMT3A, y=uvm_counts$DNMT3B)) + geom_point(color="red")
#let's revisit the eye colour plot and try to make it a bit more user friendly using the color scheme!
#here is the plain one, that doesn't have any changes made to the color scheme
ggplot(uvm_clin, aes(uvm_clin$eye_color))+geom_bar()
#is it easy to see at a glance what each of these means and compare?
#let's change the colors to reflect the eye color of the bar!
ggplot(uvm_clin, aes(uvm_clin$eye_color))+geom_bar(fill=c("gray", "black", "blue", "brown", "green"))
#okay, great! But the colours are not quite what I want them to be (brown looks a bit too red to me!)
#let's use the table of ggplot colours to improve this!
ggplot(uvm_clin, aes(uvm_clin$eye_color))+geom_bar(fill=c("gray", "black", "cornflowerblue", "sienna4", "forestgreen"))
#much better!
#Bonus: how do we only represent the known eye colours (omitting the NA and Unk)?
which(uvm_clin$eye_color=="[Not Available]")
which(uvm_clin$eye_color=="[Unknown]")
a<-c(which(uvm_clin$eye_color=="[Not Available]"), which(uvm_clin$eye_color=="[Unknown]"))
ggplot(uvm_clin[-a,], aes(uvm_clin[-a,]$eye_color))+geom_bar(fill=c("cornflowerblue", "sienna4", "forestgreen"))
#
#ggplot(uvm_clin, aes(as.numeric(uvm_clin$age_at_initial_pathologic_diagnosis)))+geom_histogram()
#boxplot example
ggplot(uvm_clin, aes(x=uvm_clin$eye_color, y=as.numeric(uvm_clin$age_at_initial_pathologic_diagnosis)))+geom_boxplot()
ggplot(uvm_clin, aes(x=uvm_clin$eye_color, y=as.numeric(uvm_clin$age_at_initial_pathologic_diagnosis), fill=uvm_clin$eye_color))+geom_boxplot()+scale_fill_brewer()
#ggplot(uvm_clin, aes(x=uvm_clin$eye_color, y=as.numeric(uvm_clin$age_at_initial_pathologic_diagnosis)))+geom_boxplot()
#density plot
ggplot(uvm_clin, aes(as.numeric(uvm_clin$age_at_initial_pathologic_diagnosis)))+geom_density()
#bar plot, changing fill
#ggplot(uvm_clin, aes(uvm_clin$eye_color))+geom_bar(fill="red")
#example of brewer use
ggplot(uvm_clin, aes(x=uvm_clin$eye_color, y=as.numeric(uvm_clin$age_at_initial_pathologic_diagnosis), fill=uvm_clin$eye_color))+geom_boxplot()+scale_fill_brewer("Blues")
ggplot(iris, aes(iris$Sepal.Length, iris$Sepal.Width, color=iris$Species))+geom_point()+scale_color_brewer(palette="Paired")
#revisiting the pathologic stage
ggplot(uvm_clin, aes(pathologic_stage, fill=uvm_clin$pathologic_stage)) + geom_bar()+scale_fill_brewer(palette="Reds")
#ggplot(uvm_clin, aes(age_at_initial_pathologic_diagnosis, fill=uvm_clin$gender)) + geom_density(alpha=0.4)
#viridis
install.packages("viridis")
library(viridis)
ggplot(iris, aes(iris$Sepal.Length, iris$Sepal.Width, color=iris$Species))+geom_point()+scale_color_viridis(discrete=TRUE)
ggplot(iris, aes(iris$Sepal.Length, iris$Sepal.Width, color=iris$Sepal.Length))+geom_point()+scale_color_viridis()
#wesanderson
install.packages("devtools")
library(devtools)
devtools::install_github("karthik/wesanderson")
library(wesanderson)
ggplot(iris, aes(iris$Sepal.Length, iris$Sepal.Width, color=iris$Species))+geom_point()+scale_color_manual(values = wes_palette("GrandBudapest1", n = 3, "discrete"))
#showing how metbrewer works
install.packages("MetBrewer")
library(MetBrewer)
ggplot(iris, aes(x=iris$Species, y=iris$Sepal.Length, fill=iris$Species))+geom_boxplot()+ scale_fill_manual(values=met.brewer("Ingres", 3))
#let's change the direction of the colors from the palette!
ggplot(iris, aes(x=iris$Species, y=iris$Sepal.Length, fill=iris$Species))+geom_boxplot()+ scale_fill_manual(values=met.brewer("Ingres", 3, direction=-1))
###################################################################################
devtools::install_github("AndreaCirilloAC/paletter")
library(paletter)
#here, you need to fill in the path to the photo you want to get the colors from!
image_path <- "/Users/octaviadancu/Downloads/marie_antoinette.jpeg"
colours_vector <- create_palette(image_path = image_path,
number_of_colors =3,
type_of_variable = "categorical")
ggplot(iris, aes(x=Species, y=Sepal.Length))+geom_boxplot(fill=colours_vector)
###################################################################################
#Exercise 3 Answer:
ggplot(uvm_clin, aes(age_at_initial_pathologic_diagnosis, fill=uvm_clin$gender)) + geom_density()
ggplot(uvm_clin, aes(age_at_initial_pathologic_diagnosis, fill=uvm_clin$gender)) + geom_density(alpha=0.4)
ggplot(uvm_clin, aes(age_at_initial_pathologic_diagnosis)) + geom_density()
###################################################################################
#ghibli color schemes
install.packages('ghibli')
library(ghibli)
fig <- ggplot(iris, aes(Sepal.Length, fill = Species)) + geom_density(alpha = 0.7)+scale_fill_ghibli_d("PonyoMedium")
fig
###################################################################################
#colorblindr
#install the different packages we'll need
remotes::install_github("wilkelab/cowplot")
library(cowplot)
#install.packages("colorspace", repos = "http://R-Forge.R-project.org")
#library(colorspace)
remotes::install_github("clauswilke/colorblindr")
library(colorblindr)
library(ggplot2)
#let's make a ggplot!
fig <- ggerrorplot(data = iris,
y = "Sepal.Length",
x = "Species",
color="Species",
add = "jitter", error.plot = "errorbar")
fig
#let's now see how it looks for someone colorblind - grid with multiple different types of colorblindness
cvd_grid(fig)
#interactive display showing plot as seen by someone with colorblindness - can change up the severity
view_cvd(fig)
# from https://github.com/clauswilke/colorblindr
#pretty good, but can we make it better?
p<-ggerrorplot(data = iris,
y = "Sepal.Length",
x = "Species",
color="Species",
palette="Paired",
add = "jitter", error.plot = "errorbar")
cvd_grid(p)
#much better!
###################################################################################
#sizes
ggplot(iris, aes(iris$Sepal.Length, iris$Sepal.Width, color=iris$Sepal.Length))+geom_point(size=2)+scale_color_viridis()
ggplot(iris, aes(iris$Sepal.Length, iris$Sepal.Width, color=iris$Sepal.Length))+geom_point(size=4)+scale_color_viridis()
#boxplot, editing titles and axes
ggplot(uvm_clin, aes(x=uvm_clin$eye_color, y=as.numeric(uvm_clin$age_at_initial_pathologic_diagnosis)))+geom_boxplot()
ggplot(uvm_clin, aes(x=uvm_clin$eye_color, y=as.numeric(uvm_clin$age_at_initial_pathologic_diagnosis)))+geom_boxplot(fill=c("gray", "black", "cornflowerblue", "sienna4", "forestgreen"))
#adding title
ggplot(uvm_clin, aes(x=uvm_clin$eye_color, y=as.numeric(uvm_clin$age_at_initial_pathologic_diagnosis)))+geom_boxplot(fill=c("gray", "black", "cornflowerblue", "sienna4", "forestgreen"))+ggtitle("Age at Initial Diagnosis, stratified by Eye Colour")
###################################################################################
#cleaning up the example plot
ggplot(iris, aes(iris$Sepal.Length, iris$Sepal.Width, color=iris$Species))+geom_point()+scale_color_brewer(palette="Paired")
#background
ggplot(iris, aes(iris$Sepal.Length, iris$Sepal.Width, color=iris$Species))+geom_point()+scale_color_brewer(palette="Paired")+theme_minimal()
ggplot(iris, aes(iris$Sepal.Length, iris$Sepal.Width, color=iris$Species))+geom_point()+scale_color_brewer(palette="Paired")+theme_light()
#getting rid of the legend
ggplot(iris, aes(iris$Sepal.Length, iris$Sepal.Width, color=iris$Species))+geom_point()+scale_color_brewer(palette="Paired")+theme_light()+theme(legend.position = "none")
ggplot(iris, aes(iris$Sepal.Length, iris$Sepal.Width, color=iris$Species))+geom_point()+scale_color_brewer(palette="Paired")+theme_light()+theme(legend.position = "none")+ggtitle("Iris")+theme(plot.title=element_text(hjust = 0.5))
###################################################################################
#upgrading the boxplot
#making up some dataset
a<-c(1,2,1,3,2,1,1,2)
b<-c(10,13,12,10,14,13,15)
ab<-c(rep("A", 8), rep("B", 7))
abc<-c(a,b)
d<-cbind.data.frame(abc, ab)
ggplot(d, aes(x=ab,y=d$abc))+geom_boxplot()
ggplot(d, aes(x=ab,y=d$abc))+geom_violin()
ggplot(d, aes(x=ab,y=d$abc))+geom_boxplot()+geom_jitter(alpha=0.5)
ggplot(d, aes(x=ab,y=d$abc))+geom_jitter(position=position_jitter(0.1))
ggplot(d, aes(x=ab,y=d$abc))+geom_violin()+geom_jitter(position=position_jitter(0.1))
###################################################################################
###################################################################################
#facet grid demo:
a<-ggplot(uvm_clin, aes(x=uvm_clin$new_tumor_event_after_initial_treatment))+geom_bar()
a+facet_grid(cols = vars(eye_color))
#let's add some colors to make this a bit easier!
a<-ggplot(uvm_clin, aes(x=uvm_clin$new_tumor_event_after_initial_treatment, fill=uvm_clin$eye_color))+geom_bar()
a+facet_grid(cols = vars(eye_color))+ scale_fill_manual(values=c("Black", "grey", "cornflowerblue", "sienna4", "forestgreen"))
###################################################################################
#linear regression
a<-ggplot(uvm_counts, aes(x=uvm_counts$DNMT3A, y=uvm_counts$DNMT3B)) + geom_point()+ stat_smooth(method = lm)
a
model <- lm(uvm_counts$DNMT3B ~ uvm_counts$DNMT3A, data = uvm_counts)
summary(model)
#correlation
cor(uvm_counts$DNMT3B, uvm_counts$DNMT3A)
###################################################################################
#let's make a heatmap!
sub_UVM <- uvm_counts[rowMeans(uvm_counts) > 0,]
vars <- apply(sub_UVM,1,var)
select <- order(vars,decreasing = T)[1:80]
sub_UVM <- sub_UVM[select,1:100]
clust_UVM<-hclust(dist(sub_UVM))
install.packages('pheatmap')
library("pheatmap")
pheatmap(sub_UVM)
###################################################################################
install.packages("heatmaply")
library(heatmaply)
heatmaply(sub_UVM)
###################################################################################
install.packages("plotly")
library(plotly)
a<-ggplot(uvm_counts, aes(x=uvm_counts$DNMT3A, y=uvm_counts$DNMT3B, color=rownames(uvm_counts))) + geom_point()+theme(legend.position = "none") + stat_smooth(method = lm)
ggplotly(a)
devtools::install_github("octaviamd/interactmapper")
library(interactmapper)
#example of use of interactmapper function, interact_multi
interact_multi(iris[,1:4], iris$Species, iris[,1:2], "UMAP", "viridis", "Species", c("Sepal Length", "Sepal Width"))
interact_multi(uvm_counts, as.factor(uvm_clin$new_tumor_event_after_initial_treatment), uvm_clin$eye_color, "UMAP", "viridis", "New Tumor Event", "Eye Color")