-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprior.py
502 lines (453 loc) · 16.9 KB
/
prior.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import numpy as np
import torch
from bayes_opt import BayesianOptimization, SequentialDomainReductionTransformer
from lpips import LPIPS
from scipy.optimize import curve_fit
from scipy.stats import beta as beta_distribution
from transformers import CLIPImageProcessor, CLIPModel
from utils import compute_lpips, compute_smoothness_and_consistency
class BetaPriorPipeline:
def __init__(self, pipe, model_ID="openai/clip-vit-base-patch32"):
self.model = CLIPModel.from_pretrained(model_ID)
self.preprocess = CLIPImageProcessor.from_pretrained(model_ID)
self.pipe = pipe
def _compute_clip(self, embedding_a, embedding_b):
similarity_score = torch.nn.functional.cosine_similarity(
embedding_a, embedding_b
)
return 1 - similarity_score[0]
def _get_feature(self, image):
with torch.no_grad():
if isinstance(image, np.ndarray):
image = self.preprocess(
image, return_tensors="pt", do_rescale=False
).pixel_values
else:
image = self.preprocess(image, return_tensors="pt").pixel_values
embedding = self.model.get_image_features(image)
return embedding
def _update_alpha_beta(self, xs, ds):
uniform_point = []
ds_sum = sum(ds)
for i in range(len(ds)):
uniform_point.append(ds[i] / ds_sum)
uniform_point = [0] + uniform_point
uniform_points = np.cumsum(uniform_point)
xs = np.asarray(xs)
uniform_points = np.asarray(uniform_points)
def beta_cdf(x, alpha, beta_param):
return beta_distribution.cdf(x, alpha, beta_param)
initial_guess = [1.0, 1.0]
bounds = ([1e-6, 1e-6], [np.inf, np.inf])
params, covariance = curve_fit(
beta_cdf, xs, uniform_points, p0=initial_guess, bounds=bounds
)
fitted_alpha, fitted_beta = params
return fitted_alpha, fitted_beta
def _add_next_point(
self,
ds,
xs,
images,
features,
alpha,
beta_param,
prompt_start,
prompt_end,
negative_prompt,
latent_start,
latent_end,
num_inference_steps,
uniform=False,
**kwargs,
):
idx = np.argmax(ds)
A = xs[idx]
B = xs[idx + 1]
F_A = beta_distribution.cdf(A, alpha, beta_param)
F_B = beta_distribution.cdf(B, alpha, beta_param)
# Compute the target CDF for t
F_t = (F_A + F_B) / 2
# Compute the value of t using the inverse CDF (percent point function)
t = beta_distribution.ppf(F_t, alpha, beta_param)
if uniform:
idx = np.argmax(np.array(xs) - np.array([0] + xs[:-1])) - 1
t = (xs[idx] + xs[idx + 1]) / 2
if t < 0 or t > 1:
return xs, False
ims = self.pipe.interpolate_single(
t,
prompt_start=prompt_start,
prompt_end=prompt_end,
negative_prompt=negative_prompt,
latent_start=latent_start,
latent_end=latent_end,
early="fused_outer",
num_inference_steps=num_inference_steps,
**kwargs,
)
added_image = ims.images[1]
added_feature = self._get_feature(added_image)
d1 = self._compute_clip(features[idx], added_feature)
d2 = self._compute_clip(features[idx + 1], added_feature)
images.insert(idx + 1, ims.images[1])
features.insert(idx + 1, added_feature)
xs.insert(idx + 1, t)
del ds[idx]
ds.insert(idx, d1)
ds.insert(idx + 1, d2)
return xs, True
def explore_with_beta(
self,
prompt_start,
prompt_end,
negative_prompt,
latent_start,
latent_end,
num_inference_steps=28,
exploration_size=16,
init_alpha=3,
init_beta=3,
uniform=False,
**kwargs,
):
xs = [0.0, 0.5, 1.0]
images = self.pipe.interpolate_single(
0.5,
prompt_start=prompt_start,
prompt_end=prompt_end,
negative_prompt=negative_prompt,
latent_start=latent_start,
latent_end=latent_end,
early="fused_outer",
num_inference_steps=num_inference_steps,
**kwargs,
)
images = images.images
images = [images[0], images[1], images[2]]
features = [self._get_feature(image) for image in images]
ds = [
self._compute_clip(features[0], features[1]),
self._compute_clip(features[1], features[2]),
]
alpha = init_alpha
beta_param = init_beta
print(
"Alpha:",
alpha,
"| Beta:",
beta_param,
"| Current Coefs:",
xs,
"| Current Distances:",
ds,
)
while len(xs) < exploration_size:
xs, flag = self._add_next_point(
ds,
xs,
images,
features,
alpha,
beta_param,
prompt_start,
prompt_end,
negative_prompt,
latent_start,
latent_end,
num_inference_steps,
uniform=uniform,
**kwargs,
)
if not flag:
break
alpha, beta_param = self._update_alpha_beta(xs, ds)
if uniform:
alpha = 1
beta_param = 1
print(f"--------Exploration: {len(xs)} / {exploration_size}--------")
print(
"Alpha:",
alpha,
"| Beta:",
beta_param,
"| Current Coefs:",
xs,
"| Current Distances:",
ds,
)
return images, features, ds, xs, alpha, beta_param
def extract_uniform_points(self, ds, interpolation_size):
expected_dis = sum(ds) / (interpolation_size - 1)
current_sum = 0
output_idxs = [0]
for idx, d in enumerate(ds):
current_sum += d
if current_sum >= expected_dis:
output_idxs.append(idx)
current_sum = 0
return output_idxs
def extract_uniform_points_plus(self, features, interpolation_size):
weights = -1 * np.ones((len(features), len(features)))
for i in range(len(features)):
for j in range(i + 1, len(features)):
weights[i][j] = self._compute_clip(features[i], features[j])
m = len(features)
n = interpolation_size
_, best_path = self.find_minimal_spread_and_path(n, m, weights)
print("Optimal smooth path:", best_path)
return best_path
def find_minimal_spread_and_path(self, n, m, weights):
# Collect all unique edge weights, excluding non-existent edges (-1)
W = sorted(
{
weights[i][j]
for i in range(m - 1)
for j in range(i + 1, m)
if weights[i][j] != -1
}
)
min_weight = W[0]
max_weight = W[-1]
low = 0.0
high = max_weight - min_weight
epsilon = 1e-6 # Desired precision
best_D = None
best_path = None
while high - low > epsilon:
D = (low + high) / 2
result = self.is_path_possible(D, n, m, weights, W)
if result is not None:
# A valid path is found
high = D
best_D = D
best_path = result
else:
low = D
return best_D, best_path
def is_path_possible(self, D, n, m, weights, W):
for w_min in W:
w_max = w_min + D
if w_max > W[-1]:
break
# Dynamic Programming to check for a valid path
dp = [[None] * (n + 1) for _ in range(m)]
dp[0][1] = (
float("-inf"),
float("inf"),
[0],
) # Start from x1 with path length 1
for l in range(1, n):
for i in range(m):
if dp[i][l] is not None:
max_w, min_w, path = dp[i][l]
for j in range(i + 1, m):
w = weights[i][j]
if w != -1 and w_min <= w <= w_max:
# Update max and min weights along the path
new_max_w = max(max_w, w)
new_min_w = min(min_w, w)
new_diff = new_max_w - new_min_w
if new_diff <= D:
dp_j_l_plus_1 = dp[j][l + 1]
if dp_j_l_plus_1 is None or new_diff < (
dp_j_l_plus_1[0] - dp_j_l_plus_1[1]
):
dp[j][l + 1] = (
new_max_w,
new_min_w,
path + [j],
)
if dp[m - 1][n] is not None:
# Reconstruct the path
_, _, path = dp[m - 1][n]
return path # Return the path if found
return None # Return None if no valid path is found
def generate_interpolation(
self,
prompt_start,
prompt_end,
negative_prompt,
latent_start,
latent_end,
num_inference_steps=28,
exploration_size=16,
init_alpha=3,
init_beta=3,
interpolation_size=7,
uniform=False,
**kwargs,
):
images, features, ds, xs, alpha, beta_param = self.explore_with_beta(
prompt_start,
prompt_end,
negative_prompt,
latent_start,
latent_end,
num_inference_steps,
exploration_size,
init_alpha,
init_beta,
uniform=uniform,
**kwargs,
)
# output_idx = self.extract_uniform_points(ds, interpolation_size)
output_idx = self.extract_uniform_points_plus(features, interpolation_size)
output_images = []
for idx in output_idx:
output_images.append(images[idx])
# for call_back
self.images = images
self.ds = ds
self.xs = xs
self.alpha = alpha
self.beta_param = beta_param
return output_images
def bayesian_prior_selection(
interpolation_pipe,
latent1: torch.FloatTensor,
latent2: torch.FloatTensor,
prompt1: str,
prompt2: str,
lpips_model: LPIPS,
guide_prompt: str | None = None,
negative_prompt: str = "",
size: int = 3,
num_inference_steps: int = 25,
warmup_ratio: float = 1,
early: str = "vfused",
late: str = "self",
target_score: float = 0.9,
n_iter: int = 15,
p_min: float | None = None,
p_max: float | None = None,
) -> tuple:
"""
Select the alpha and beta parameters for the interpolation using Bayesian optimization.
Args:
interpolation_pipe (any): The interpolation pipeline.
latent1 (torch.FloatTensor): The first source latent vector.
latent2 (torch.FloatTensor): The second source latent vector.
prompt1 (str): The first source prompt.
prompt2 (str): The second source prompt.
lpips_model (any): The LPIPS model used to compute perceptual distances.
guide_prompt (str | None, optional): The guide prompt for the interpolation, if any. Defaults to None.
negative_prompt (str, optional): The negative prompt for the interpolation, default to empty string. Defaults to "".
size (int, optional): The size of the interpolation sequence. Defaults to 3.
num_inference_steps (int, optional): The number of inference steps. Defaults to 25.
warmup_ratio (float, optional): The warmup ratio. Defaults to 1.
early (str, optional): The early fusion method. Defaults to "vfused".
late (str, optional): The late fusion method. Defaults to "self".
target_score (float, optional): The target score. Defaults to 0.9.
n_iter (int, optional): The maximum number of iterations. Defaults to 15.
p_min (float, optional): The minimum value of alpha and beta. Defaults to None.
p_max (float, optional): The maximum value of alpha and beta. Defaults to None.
Returns:
tuple: A tuple containing the selected alpha and beta parameters.
"""
def get_smoothness(alpha, beta):
"""
Black-box objective function of Bayesian Optimization.
Get the smoothness of the interpolated sequence with the given alpha and beta.
"""
if alpha < beta and large_alpha_prior:
return 0
if alpha > beta and not large_alpha_prior:
return 0
if alpha == beta:
return init_smoothness
interpolation_sequence = interpolation_pipe.interpolate_save_gpu(
latent1,
latent2,
prompt1,
prompt2,
guide_prompt=guide_prompt,
negative_prompt=negative_prompt,
size=size,
num_inference_steps=num_inference_steps,
warmup_ratio=warmup_ratio,
early=early,
late=late,
alpha=alpha,
beta=beta,
)
smoothness, _, _ = compute_smoothness_and_consistency(
interpolation_sequence, lpips_model
)
return smoothness
# Add prior into selection of alpha and beta
# We firstly compute the interpolated images with t=0.5
images = interpolation_pipe.interpolate_single(
0.5,
latent1,
latent2,
prompt1,
prompt2,
guide_prompt=guide_prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
warmup_ratio=warmup_ratio,
early=early,
late=late,
)
# We compute the perceptual distances of the interpolated images (t=0.5) to the source image
distances = compute_lpips(images, lpips_model)
# We compute the init_smoothness as the smoothness when alpha=beta to avoid recomputation
init_smoothness, _, _ = compute_smoothness_and_consistency(images, lpips_model)
# If perceptual distance to the first source image is smaller, alpha should be larger than beta
large_alpha_prior = distances[0] < distances[1]
# Bayesian optimization configuration
num_warmup_steps = warmup_ratio * num_inference_steps
if p_min is None:
p_min = 1
if p_max is None:
p_max = num_warmup_steps
pbounds = {"alpha": (p_min, p_max), "beta": (p_min, p_max)}
bounds_transformer = SequentialDomainReductionTransformer(minimum_window=0.1)
optimizer = BayesianOptimization(
f=get_smoothness,
pbounds=pbounds,
random_state=1,
bounds_transformer=bounds_transformer,
allow_duplicate_points=True,
)
alpha_init = [p_min, (p_min + p_max) / 2, p_max]
beta_init = [p_min, (p_min + p_max) / 2, p_max]
# Initial probing
for alpha in alpha_init:
for beta in beta_init:
optimizer.probe(params={"alpha": alpha, "beta": beta}, lazy=False)
latest_result = optimizer.res[-1] # Get the last result
latest_score = latest_result["target"]
if latest_score >= target_score:
return alpha, beta
# Start optimization
for _ in range(n_iter): # Max iterations
optimizer.maximize(init_points=0, n_iter=1) # One iteration at a time
max_score = optimizer.max["target"] # Get the highest score so far
if max_score >= target_score:
print(f"Stopping early, target of {target_score} reached.")
break # Exit the loop if target is reached or exceeded
results = optimizer.max
alpha = results["params"]["alpha"]
beta = results["params"]["beta"]
return alpha, beta
def generate_beta_tensor(
size: int, alpha: float = 3, beta: float = 3
) -> torch.FloatTensor:
"""
Assume size as n
Generates a PyTorch tensor of values [x0, x1, ..., xn-1] for the Beta distribution
where each xi satisfies F(xi) = i/(n-1) for the CDF F of the Beta distribution.
Args:
size (int): The number of values to generate.
alpha (float): The alpha parameter of the Beta distribution.
beta (float): The beta parameter of the Beta distribution.
Returns:
torch.Tensor: A tensor of the inverse CDF values of the Beta distribution.
"""
# Generating the inverse CDF values
prob_values = [i / (size - 1) for i in range(size)]
inverse_cdf_values = beta_distribution.ppf(prob_values, alpha, beta)
# Converting to a PyTorch tensor
return torch.tensor(inverse_cdf_values, dtype=torch.float32)