-
Notifications
You must be signed in to change notification settings - Fork 6
/
test_dnn.py
188 lines (151 loc) · 7.58 KB
/
test_dnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#!/usr/bin/env python
import os
import cv2 as cv
import numpy as np
# from tests_common import NewOpenCVTests, unittest
def normAssert(test, a, b, lInf=1e-5):
test.assertLess(np.max(np.abs(a - b)), lInf)
def inter_area(box1, box2):
x_min, x_max = max(box1[0], box2[0]), min(box1[2], box2[2])
y_min, y_max = max(box1[1], box2[1]), min(box1[3], box2[3])
return (x_max - x_min) * (y_max - y_min)
def area(box):
return (box[2] - box[0]) * (box[3] - box[1])
def box2str(box):
left, top = box[0], box[1]
width, height = box[2] - left, box[3] - top
return '[%f x %f from (%f, %f)]' % (width, height, left, top)
def normAssertDetections(test, ref, out, confThreshold=0.0, scores_diff=1e-5, boxes_iou_diff=1e-4):
ref = np.array(ref, np.float32)
refClassIds, testClassIds = ref[:, 1], out[:, 1]
refScores, testScores = ref[:, 2], out[:, 2]
refBoxes, testBoxes = ref[:, 3:], out[:, 3:]
matchedRefBoxes = [False] * len(refBoxes)
errMsg = ''
for i in range(len(refBoxes)):
testScore = testScores[i]
if testScore < confThreshold:
continue
testClassId, testBox = testClassIds[i], testBoxes[i]
matched = False
for j in range(len(refBoxes)):
if (not matchedRefBoxes[j]) and testClassId == refClassIds[j] and \
abs(testScore - refScores[j]) < scores_diff:
interArea = inter_area(testBox, refBoxes[j])
iou = interArea / (area(testBox) + area(refBoxes[j]) - interArea)
if abs(iou - 1.0) < boxes_iou_diff:
matched = True
matchedRefBoxes[j] = True
if not matched:
errMsg += '\nUnmatched prediction: class %d score %f box %s' % (testClassId, testScore, box2str(testBox))
for i in range(len(refBoxes)):
if (not matchedRefBoxes[i]) and refScores[i] > confThreshold:
errMsg += '\nUnmatched reference: class %d score %f box %s' % (refClassIds[i], refScores[i], box2str(refBoxes[i]))
if errMsg:
test.fail(errMsg)
# Returns a simple one-layer network created from Caffe's format
def getSimpleNet():
prototxt = """
name: "simpleNet"
input: "data"
layer {
type: "Identity"
name: "testLayer"
top: "testLayer"
bottom: "data"
}
"""
return cv.dnn.readNetFromCaffe(bytearray(prototxt, 'utf8'))
def testBackendAndTarget(backend, target):
net = getSimpleNet()
net.setPreferableBackend(backend)
net.setPreferableTarget(target)
inp = np.random.standard_normal([1, 2, 3, 4]).astype(np.float32)
try:
net.setInput(inp)
net.forward()
print("backend {} target {} works".format(backend,target))
except BaseException as e:
print("backend {} target {} does not works".format(backend,target))
return False
return True
haveInfEngine = testBackendAndTarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU)
dnnBackendsAndTargets = [
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
]
if haveInfEngine:
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU])
if testBackendAndTarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD):
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD])
if cv.ocl.haveOpenCL() and cv.ocl.useOpenCL():
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL])
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL_FP16])
if haveInfEngine and cv.ocl_Device.getDefault().isIntel():
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL])
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL_FP16])
for b, t in dnnBackendsAndTargets:
testBackendAndTarget(b,t)
def printParams(backend, target):
backendNames = {
cv.dnn.DNN_BACKEND_OPENCV: 'OCV',
cv.dnn.DNN_BACKEND_INFERENCE_ENGINE: 'DLIE'
}
targetNames = {
cv.dnn.DNN_TARGET_CPU: 'CPU',
cv.dnn.DNN_TARGET_OPENCL: 'OCL',
cv.dnn.DNN_TARGET_OPENCL_FP16: 'OCL_FP16',
cv.dnn.DNN_TARGET_MYRIAD: 'MYRIAD'
}
print('%s/%s' % (backendNames[backend], targetNames[target]))
# class dnn_test(NewOpenCVTests):
# def find_dnn_file(self, filename, required=True):
# return self.find_file(filename, [os.environ.get('OPENCV_DNN_TEST_DATA_PATH', os.getcwd())], required=required)
# def test_blobFromImage(self):
# np.random.seed(324)
# width = 6
# height = 7
# scale = 1.0/127.5
# mean = (10, 20, 30)
# # Test arguments names.
# img = np.random.randint(0, 255, [4, 5, 3]).astype(np.uint8)
# blob = cv.dnn.blobFromImage(img, scale, (width, height), mean, True, False)
# blob_args = cv.dnn.blobFromImage(img, scalefactor=scale, size=(width, height),
# mean=mean, swapRB=True, crop=False)
# normAssert(self, blob, blob_args)
# # Test values.
# target = cv.resize(img, (width, height), interpolation=cv.INTER_LINEAR)
# target = target.astype(np.float32)
# target = target[:,:,[2, 1, 0]] # BGR2RGB
# target[:,:,0] -= mean[0]
# target[:,:,1] -= mean[1]
# target[:,:,2] -= mean[2]
# target *= scale
# target = target.transpose(2, 0, 1).reshape(1, 3, height, width) # to NCHW
# normAssert(self, blob, target)
# def test_face_detection(self):
# testdata_required = bool(os.environ.get('OPENCV_DNN_TEST_REQUIRE_TESTDATA', False))
# proto = self.find_dnn_file('dnn/opencv_face_detector.prototxt2', required=testdata_required)
# model = self.find_dnn_file('dnn/opencv_face_detector.caffemodel', required=testdata_required)
# if proto is None or model is None:
# raise unittest.SkipTest("Missing DNN test files (dnn/opencv_face_detector.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
# img = self.get_sample('gpu/lbpcascade/er.png')
# blob = cv.dnn.blobFromImage(img, mean=(104, 177, 123), swapRB=False, crop=False)
# ref = [[0, 1, 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631],
# [0, 1, 0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168],
# [0, 1, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290],
# [0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477],
# [0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494],
# [0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801]]
# print('\n')
# for backend, target in dnnBackendsAndTargets:
# printParams(backend, target)
# net = cv.dnn.readNet(proto, model)
# net.setPreferableBackend(backend)
# net.setPreferableTarget(target)
# net.setInput(blob)
# out = net.forward().reshape(-1, 7)
# scoresDiff = 4e-3 if target in [cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD] else 1e-5
# iouDiff = 2e-2 if target in [cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD] else 1e-4
# normAssertDetections(self, ref, out, 0.5, scoresDiff, iouDiff)
# if __name__ == '__main__':
# NewOpenCVTests.bootstrap()