forked from modelscope/data-juicer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluator.py
303 lines (280 loc) · 13.5 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import argparse
import os
import shutil
import subprocess
import time
import yaml
from gpt_eval.gpt_evaluator import GPTEvaluator
from recorder.wandb_writer import HelmWriter
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True)
parser.add_argument('--model-type',
choices=['megatron', 'huggingface'],
default='megatron')
parser.add_argument('--eval-type', choices=['helm', 'gpt'], default='helm')
parser.add_argument('--iteration-interval', type=int, default=1000)
parser.add_argument('--begin-iteration', type=int, default=None)
parser.add_argument('--end-iteration', type=int, default=None)
parser.add_argument('--check-iterval', type=int, default=30)
return parser.parse_args()
def check_args(args):
if args.begin_iteration is None:
print(f'--begin-iteration is not provided, use the value of '
f'--iteration-interval ({args.iteration_interval}).')
args.begin_iteration = args.iteration_interval
if args.end_iteration is None:
print('--end-iteration is not provided, evaluator will monitor the '
'training process continuously.')
args.end_iteration = float('inf')
class Evaluator():
def __init__(self, args):
with open(args.config, 'r', encoding='utf-8') as f:
self.config = yaml.safe_load(f)['auto_eval']
self.eval_type = args.eval_type
self.iteration_interval = args.iteration_interval
self.begin_iteration = args.begin_iteration
self.end_iteration = args.end_iteration
self.check_iterval = args.check_iterval
self.load_config()
def load_config(self):
self.project_name = self.config['project_name']
self.model_name = self.config['model_name']
self.full_name = f'{self.project_name}-{self.model_name}'
# load cache dir
self.cur_dir = os.path.abspath(os.getcwd())
self.cache_dir = self.config[
'cache_dir'] if 'cache_dir' in self.config else os.path.join(
self.cur_dir, 'cache')
if not os.path.exists(self.cache_dir):
os.makedirs(self.cache_dir)
# load megatron config
if 'megatron' in self.config:
os.environ['CUDA_DEVICE_MAX_CONNECTIONS'] = '1'
os.environ['OMP_NUM_THREADS'] = '4'
self.megatron_process_num = self.config['megatron']['process_num']
self.megatron_checkpoint_path = self.config['megatron'][
'checkpoint_path']
# for different tokenizer
if self.config['megatron']['tokenizer_type'] == 'sentencepiece':
self.tokenizer_type = 'sentencepiece'
self.vocab_path = None
self.merge_path = None
self.tokenizer_path = self.config['megatron']['tokenizer_path']
elif self.config['megatron']['tokenizer_type'] == 'gpt2':
self.tokenizer_type = 'gpt2'
self.vocab_path = self.config['megatron']['vocab_path']
self.merge_path = self.config['megatron']['merge_path']
self.tokenizer_path = None
else:
raise NotImplementedError(
f'tokenizer type: '
f"{self.config['megatron']['tokenizer_type']} is not "
f'supported')
self.megatron_log_path = os.path.join(self.cache_dir,
'megatron.log')
if 'log_path' in self.config['megatron']:
self.megatron_log_path = self.config['megatron']['log_path']
self.megatron_server_port = 5000
if 'port' in self.config['megatron']:
self.megatron_server_port = self.config['megatron']['port']
self.megatron_home = self.cur_dir
if 'megatron_home' in self.config['megatron']:
self.megatron_home = self.config['megatron']['megatron_home']
self.max_tokens = 512
if 'max_tokens' in self.config['megatron']:
self.max_tokens = self.config['megatron']['max_tokens']
self.megatron_token_per_iteration = 0
if 'token_per_iteration' in self.config['megatron']:
self.megatron_token_per_iteration = self.config['megatron'][
'token_per_iteration']
# load helm config
if 'helm' in self.config:
self.helm_spec_template_path = self.config['helm'][
'helm_spec_template_path']
self.helm_output_path = self.config['helm']['helm_output_path']
self.helm_spec_path = os.path.join(self.cache_dir,
'helm_spec.conf')
self.helm_cache_path = os.path.join(self.cache_dir, 'helm_cache')
self.helm_suite_name = self.full_name
self.helm_conda_env = self.config['helm'][
'helm_env_name'] if 'helm_env_name' in self.config[
'helm'] else 'crfm-helm'
self.helm_eval_instances = self.config['helm'][
'eval_instances'] if 'eval_instances' in self.config[
'helm'] else 100
self.helm_benchmarks = self.config['helm'][
'benchmarks'] if 'benchmarks' in self.config['helm'] else None
self.helm_mymodel_config = os.path.join(self.cache_dir,
'helm_config.yaml')
with open(self.helm_mymodel_config, 'w', encoding='utf-8') as f:
mymodel_config = {
'port': self.megatron_server_port,
'tokenizer': {
'type': self.tokenizer_type,
'vocab_path': self.vocab_path,
'merge_path': self.merge_path,
'tokenizer_path': self.tokenizer_path
}
}
yaml.dump(mymodel_config, f)
if self.eval_type == 'gpt':
self.gpt_question_file = self.config['gpt_evaluation'][
'question_file']
self.gpt_answer_file = self.config['gpt_evaluation']['answer_file']
if 'wandb' in self.config:
self.wandb_base_url = self.config['wandb'][
'base_url'] if 'base_url' in self.config['wandb'] else None
self.wandb_project = self.config['wandb'][
'project'] if 'project' in self.config[
'wandb'] else self.project_name
def _set_megatron_tokenizer(self, args):
if self.tokenizer_type == 'gpt2':
args.append('GPT2BPETokenizer')
args.append('--vocab-file')
args.append(self.vocab_path)
args.append('--merge-file')
args.append(self.merge_path)
elif self.tokenizer_type == 'sentencepiece':
args.append('SentencePieceTokenizer')
args.append('--tokenizer-model')
args.append(self.tokenizer_path)
def run_megatron_server(self, iteration):
while not self.megatron_checkpoint_exists(iteration):
print(f'Wait for megatron checkpoint {iteration}')
time.sleep(self.check_iterval * 60)
# setup megatron server
print(f'Start megatron text generation server for checkpoint '
f'iter_{iteration}')
args = [
'torchrun', '--master_addr', '127.0.0.1', '--master_port', '5950',
'--nproc_per_node',
str(self.megatron_process_num), '--nnodes', '1', '--node_rank',
'0',
os.path.join(self.megatron_home,
'tools/run_text_generation_server.py'), '--port',
str(self.megatron_server_port), '--use-checkpoint-args', '--load',
self.megatron_checkpoint_path, '--load-iteration',
str(iteration), '--tokenizer-type'
]
self._set_megatron_tokenizer(args)
logfile = open(self.megatron_log_path, 'w')
os.chdir(self.megatron_home)
process = subprocess.Popen(args, stdout=logfile, stderr=logfile)
os.chdir(self.cur_dir)
return {'process': process, 'logfile': logfile}
def stop_megatron_server(self, process, logfile):
process.terminate()
logfile.close()
print('Stop megatron text generation server')
def run_megatron_inference(self, iteration):
while not self.megatron_checkpoint_exists(iteration):
time.sleep(self.check_iterval * 60)
print(f'Wait for megatron checkpoint {iteration}')
print(f'Start megatron inference for checkpoint iter_{iteration}')
args = [
'torchrun', '--master_addr', '127.0.0.1', '--master_port', '5950',
'--nproc_per_node', '1', '--nnodes',
str(self.megatron_process_num), '--node_rank', '0',
'tools/inference.py', '--use-checkpoint-args', '--formatter',
'gpt_eval', '--tokens-to-generate',
str(self.max_tokens), '--input', self.gpt_question_file,
'--output', self.gpt_answer_file, '--load',
self.megatron_checkpoint_path, '--load-iteration',
str(iteration), '--model-name', f'{self.full_name}/{iteration}',
'--tokenizer-type'
]
self._set_megatron_tokenizer(args)
logfile = open(self.megatron_log_path, 'w')
os.chdir(self.megatron_home)
subprocess.run(args)
os.chdir(self.cur_dir)
logfile.close()
return {}
def megatron_checkpoint_exists(self, iteration):
with open(
os.path.join(self.megatron_checkpoint_path,
'latest_checkpointed_iteration.txt'), 'r') as f:
latest_checkpoint_iter = int(f.readline())
if iteration > latest_checkpoint_iter:
return False
checkpoint_path = os.path.join(self.megatron_checkpoint_path,
'iter_{:07d}'.format(iteration))
return os.path.exists(checkpoint_path)
def replace_pattern(self, input_file, output_file, pattern, s):
with open(input_file, 'r',
encoding='utf-8') as input, open(output_file,
'w',
encoding='utf-8') as output:
lines = input.readlines()
for i in range(len(lines)):
lines[i] = lines[i].replace(pattern, s)
output.writelines(lines)
def run_helm_eval(self, iteration):
print(f'Start helm evaluation for checkpoint iter_{iteration}')
if os.path.exists(self.helm_cache_path):
shutil.rmtree(self.helm_cache_path)
self.replace_pattern(self.helm_spec_template_path, self.helm_spec_path,
'<model>',
f'mymodel/{self.full_name}/{iteration}')
helm_run_args = [
'conda', 'run', '-n', self.helm_conda_env, '--no-capture-output',
'helm-run', '-n', '4', '-m',
str(self.helm_eval_instances), '--conf-paths', self.helm_spec_path,
'--my-config-path', self.helm_mymodel_config, '--local-path',
self.helm_cache_path, '--suite', self.helm_suite_name, '-o',
self.helm_output_path
]
subprocess.check_call(helm_run_args)
print(f'run helm summarize for checkpoint iter_{iteration}')
helm_summarize_args = [
'conda', 'run', '-n', self.helm_conda_env, '--no-capture-output',
'helm-summarize', '--suite', self.helm_suite_name, '-o',
self.helm_output_path
]
subprocess.check_call(helm_summarize_args)
print(f'Finish helm evaluation for checkpoint iter_{iteration}')
def run_gpt_eval(self, iteration):
GPTEvaluator(self.config['gpt_evaluation']).run()
def write_wandb(self):
if self.eval_type == 'helm':
helm_config = {
'model_name': self.full_name,
'source': 'helm',
'helm_output_dir': self.helm_output_path,
'helm_suite_name': self.helm_suite_name,
'token_per_iteration': self.megatron_token_per_iteration
}
if self.helm_benchmarks is not None:
helm_config['benchmarks'] = self.helm_benchmarks
HelmWriter(project_name=self.wandb_project,
base_url=self.wandb_base_url,
helm_config=helm_config)
def evaluate(self, start_gen_func, start_eval_func, stop_gen_func,
stop_eval_func):
cur_iter = self.begin_iteration
while cur_iter <= self.end_iteration:
states = start_gen_func(cur_iter)
start_eval_func(cur_iter)
stop_eval_func()
stop_gen_func(**states)
cur_iter += self.iteration_interval
def dummy_stop(self, args=None):
return
def run(self):
if self.eval_type == 'helm':
start_gen_func = self.run_megatron_server
start_eval_func = self.run_helm_eval
stop_gen_func = self.stop_megatron_server
stop_eval_func = self.dummy_stop
elif self.eval_type == 'gpt':
start_gen_func = self.run_megatron_inference
start_eval_func = self.run_gpt_eval
stop_gen_func = self.dummy_stop
stop_eval_func = self.dummy_stop
self.evaluate(start_gen_func, start_eval_func, stop_gen_func,
stop_eval_func)
if __name__ == '__main__':
args = parse_args()
check_args(args)
Evaluator(args).run()