diff --git a/content/demo-dev.html b/content/demo-dev.html index 16bb317..7fd9021 100644 --- a/content/demo-dev.html +++ b/content/demo-dev.html @@ -9,7 +9,7 @@ @@ -165,7 +176,15 @@

AI Assurance Portal

const wrapper = document.createElement('div'); wrapper.classList.add('code-wrapper'); codeEl.replaceWith(wrapper); - wrapper.appendChild(codeEl) + wrapper.appendChild(codeEl); + + const spinerWrapper = document.createElement('div'); + const spiner = document.createElement('div'); + spinerWrapper.appendChild(spiner); + spinerWrapper.className = "spinner-wrapper"; + spiner.className = 'spinner-border text-primary'; + wrapper.appendChild(spinerWrapper); + wrapper.appendChild(iframe); iframe.style.display = 'none'; iframe.onload = async () => { @@ -175,6 +194,7 @@

AI Assurance Portal

jupyter.restored.then(() => { codeEl.style.display = 'none'; iframe.style.display = 'block'; + spinerWrapper.style.display = 'none'; }); jupyter.shell.currentChanged.connect((shell, change) => { jupyter.commands.execute('console:replace-selection', {text: cleanCode}); @@ -182,6 +202,7 @@

AI Assurance Portal

} else { codeEl.style.display = 'none'; iframe.style.display = 'block'; + spinerWrapper.style.display = 'none'; } } } @@ -191,4 +212,3 @@

AI Assurance Portal

- diff --git a/content/demo.html b/content/demo.html index bcc5b88..7fd9021 100644 --- a/content/demo.html +++ b/content/demo.html @@ -9,117 +9,205 @@ -
-
-
-

I'm testing out this simple logistic regression model but it does not work, how can I fix that?

- - from sklearn import datasets - from sklearn.linear_model import LogisticRegression +
+
+

AI Assurance Portal

+
+
+
+ + M. K. +
+
+

I'm testing out this simple logistic regression model but it does not work, how can I fix that?

+ + from sklearn import datasets + from sklearn.linear_model import LogisticRegression - X, y = datasets.load_digits(return_X_y=True) - y = (y > 4).astype(int) + X, y = datasets.load_digits(return_X_y=True) + y = (y > 4).astype(int) - model = LogisticRegression(penalty="l1", tol=0.01) - model.fit(X, y) - + model = LogisticRegression(penalty="l1", tol=0.01) + model.fit(X, y) +
+
-
- -
-
-
-

You need to change solver, by passing an argument like this solver="saga", see below:

- - from sklearn import datasets - from sklearn.linear_model import LogisticRegression +
+
+ + D. P. +
+
+

You need to change solver, by passing an argument like this solver="saga", see below:

+ + from sklearn import datasets + from sklearn.linear_model import LogisticRegression - X, y = datasets.load_digits(return_X_y=True) - y = (y > 4).astype(int) + X, y = datasets.load_digits(return_X_y=True) + y = (y > 4).astype(int) - model = LogisticRegression(penalty="l1", tol=0.01, solver="saga") - model.fit(X, y) - + model = LogisticRegression(penalty="l1", tol=0.01, solver="saga") + model.fit(X, y) +
+
-
-