-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththinkplot.py
838 lines (679 loc) · 22.8 KB
/
thinkplot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
from __future__ import print_function
import math
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import warnings
# customize some matplotlib attributes
#matplotlib.rc('figure', figsize=(4, 3))
#matplotlib.rc('font', size=14.0)
#matplotlib.rc('axes', labelsize=22.0, titlesize=22.0)
#matplotlib.rc('legend', fontsize=20.0)
#matplotlib.rc('xtick.major', size=6.0)
#matplotlib.rc('xtick.minor', size=3.0)
#matplotlib.rc('ytick.major', size=6.0)
#matplotlib.rc('ytick.minor', size=3.0)
class _Brewer(object):
"""Encapsulates a nice sequence of colors.
Shades of blue that look good in color and can be distinguished
in grayscale (up to a point).
Borrowed from http://colorbrewer2.org/
"""
color_iter = None
colors = ['#f7fbff', '#deebf7', '#c6dbef',
'#9ecae1', '#6baed6', '#4292c6',
'#2171b5','#08519c','#08306b'][::-1]
# lists that indicate which colors to use depending on how many are used
which_colors = [[],
[1],
[1, 3],
[0, 2, 4],
[0, 2, 4, 6],
[0, 2, 3, 5, 6],
[0, 2, 3, 4, 5, 6],
[0, 1, 2, 3, 4, 5, 6],
[0, 1, 2, 3, 4, 5, 6, 7],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
]
current_figure = None
@classmethod
def Colors(cls):
"""Returns the list of colors.
"""
return cls.colors
@classmethod
def ColorGenerator(cls, num):
"""Returns an iterator of color strings.
n: how many colors will be used
"""
for i in cls.which_colors[num]:
yield cls.colors[i]
raise StopIteration('Ran out of colors in _Brewer.')
@classmethod
def InitIter(cls, num):
"""Initializes the color iterator with the given number of colors."""
cls.color_iter = cls.ColorGenerator(num)
fig = plt.gcf()
cls.current_figure = fig
@classmethod
def ClearIter(cls):
"""Sets the color iterator to None."""
cls.color_iter = None
cls.current_figure = None
@classmethod
def GetIter(cls, num):
"""Gets the color iterator."""
fig = plt.gcf()
if fig != cls.current_figure:
cls.InitIter(num)
cls.current_figure = fig
if cls.color_iter is None:
cls.InitIter(num)
return cls.color_iter
def _UnderrideColor(options):
"""If color is not in the options, chooses a color.
"""
if 'color' in options:
return options
# get the current color iterator; if there is none, init one
color_iter = _Brewer.GetIter(5)
try:
options['color'] = next(color_iter)
except StopIteration:
# if you run out of colors, initialize the color iterator
# and try again
warnings.warn('Ran out of colors. Starting over.')
_Brewer.ClearIter()
_UnderrideColor(options)
return options
def PrePlot(num=None, rows=None, cols=None):
"""Takes hints about what's coming.
num: number of lines that will be plotted
rows: number of rows of subplots
cols: number of columns of subplots
"""
if num:
_Brewer.InitIter(num)
if rows is None and cols is None:
return
if rows is not None and cols is None:
cols = 1
if cols is not None and rows is None:
rows = 1
# resize the image, depending on the number of rows and cols
size_map = {(1, 1): (8, 6),
(1, 2): (12, 6),
(1, 3): (12, 6),
(1, 4): (12, 5),
(1, 5): (12, 4),
(2, 2): (10, 10),
(2, 3): (16, 10),
(3, 1): (8, 10),
(4, 1): (8, 12),
}
if (rows, cols) in size_map:
fig = plt.gcf()
fig.set_size_inches(*size_map[rows, cols])
# create the first subplot
if rows > 1 or cols > 1:
ax = plt.subplot(rows, cols, 1)
global SUBPLOT_ROWS, SUBPLOT_COLS
SUBPLOT_ROWS = rows
SUBPLOT_COLS = cols
else:
ax = plt.gca()
return ax
def SubPlot(plot_number, rows=None, cols=None, **options):
"""Configures the number of subplots and changes the current plot.
rows: int
cols: int
plot_number: int
options: passed to subplot
"""
rows = rows or SUBPLOT_ROWS
cols = cols or SUBPLOT_COLS
return plt.subplot(rows, cols, plot_number, **options)
def _Underride(d, **options):
"""Add key-value pairs to d only if key is not in d.
If d is None, create a new dictionary.
d: dictionary
options: keyword args to add to d
"""
if d is None:
d = {}
for key, val in options.items():
d.setdefault(key, val)
return d
def Clf():
"""Clears the figure and any hints that have been set."""
global LOC
LOC = None
_Brewer.ClearIter()
plt.clf()
fig = plt.gcf()
fig.set_size_inches(8, 6)
def Figure(**options):
"""Sets options for the current figure."""
_Underride(options, figsize=(6, 8))
plt.figure(**options)
def Plot(obj, ys=None, style='', **options):
"""Plots a line.
Args:
obj: sequence of x values, or Series, or anything with Render()
ys: sequence of y values
style: style string passed along to plt.plot
options: keyword args passed to plt.plot
"""
options = _UnderrideColor(options)
label = getattr(obj, 'label', '_nolegend_')
options = _Underride(options, linewidth=3, alpha=0.7, label=label)
xs = obj
if ys is None:
if hasattr(obj, 'Render'):
xs, ys = obj.Render()
if isinstance(obj, pd.Series):
ys = obj.values
xs = obj.index
if ys is None:
plt.plot(xs, style, **options)
else:
plt.plot(xs, ys, style, **options)
def Vlines(xs, y1, y2, **options):
"""Plots a set of vertical lines.
Args:
xs: sequence of x values
y1: sequence of y values
y2: sequence of y values
options: keyword args passed to plt.vlines
"""
options = _UnderrideColor(options)
options = _Underride(options, linewidth=1, alpha=0.5)
plt.vlines(xs, y1, y2, **options)
def Hlines(ys, x1, x2, **options):
"""Plots a set of horizontal lines.
Args:
ys: sequence of y values
x1: sequence of x values
x2: sequence of x values
options: keyword args passed to plt.vlines
"""
options = _UnderrideColor(options)
options = _Underride(options, linewidth=1, alpha=0.5)
plt.hlines(ys, x1, x2, **options)
def axvline(x, **options):
"""Plots a vertical line.
Args:
x: x location
options: keyword args passed to plt.axvline
"""
options = _UnderrideColor(options)
options = _Underride(options, linewidth=1, alpha=0.5)
plt.axvline(x, **options)
def axhline(y, **options):
"""Plots a horizontal line.
Args:
y: y location
options: keyword args passed to plt.axhline
"""
options = _UnderrideColor(options)
options = _Underride(options, linewidth=1, alpha=0.5)
plt.axhline(y, **options)
def tight_layout(**options):
"""Adjust subplots to minimize padding and margins.
"""
options = _Underride(options,
wspace=0.1, hspace=0.1,
left=0, right=1,
bottom=0, top=1)
plt.tight_layout()
plt.subplots_adjust(**options)
def FillBetween(xs, y1, y2=None, where=None, **options):
"""Fills the space between two lines.
Args:
xs: sequence of x values
y1: sequence of y values
y2: sequence of y values
where: sequence of boolean
options: keyword args passed to plt.fill_between
"""
options = _UnderrideColor(options)
options = _Underride(options, linewidth=0, alpha=0.5)
plt.fill_between(xs, y1, y2, where, **options)
def Bar(xs, ys, **options):
"""Plots a line.
Args:
xs: sequence of x values
ys: sequence of y values
options: keyword args passed to plt.bar
"""
options = _UnderrideColor(options)
options = _Underride(options, linewidth=0, alpha=0.6)
plt.bar(xs, ys, **options)
def Scatter(xs, ys=None, **options):
"""Makes a scatter plot.
xs: x values
ys: y values
options: options passed to plt.scatter
"""
options = _Underride(options, color='blue', alpha=0.2,
s=30, edgecolors='none')
if ys is None and isinstance(xs, pd.Series):
ys = xs.values
xs = xs.index
plt.scatter(xs, ys, **options)
def HexBin(xs, ys, **options):
"""Makes a scatter plot.
xs: x values
ys: y values
options: options passed to plt.scatter
"""
options = _Underride(options, cmap=matplotlib.cm.Blues)
plt.hexbin(xs, ys, **options)
def Pdf(pdf, **options):
"""Plots a Pdf, Pmf, or Hist as a line.
Args:
pdf: Pdf, Pmf, or Hist object
options: keyword args passed to plt.plot
"""
low, high = options.pop('low', None), options.pop('high', None)
n = options.pop('n', 101)
xs, ps = pdf.Render(low=low, high=high, n=n)
options = _Underride(options, label=pdf.label)
Plot(xs, ps, **options)
def Pdfs(pdfs, **options):
"""Plots a sequence of PDFs.
Options are passed along for all PDFs. If you want different
options for each pdf, make multiple calls to Pdf.
Args:
pdfs: sequence of PDF objects
options: keyword args passed to plt.plot
"""
for pdf in pdfs:
Pdf(pdf, **options)
def Hist(hist, **options):
"""Plots a Pmf or Hist with a bar plot.
The default width of the bars is based on the minimum difference
between values in the Hist. If that's too small, you can override
it by providing a width keyword argument, in the same units
as the values.
Args:
hist: Hist or Pmf object
options: keyword args passed to plt.bar
"""
# find the minimum distance between adjacent values
xs, ys = hist.Render()
# see if the values support arithmetic
try:
xs[0] - xs[0]
except TypeError:
# if not, replace values with numbers
labels = [str(x) for x in xs]
xs = np.arange(len(xs))
plt.xticks(xs+0.5, labels)
if 'width' not in options:
try:
options['width'] = 0.9 * np.diff(xs).min()
except TypeError:
warnings.warn("Hist: Can't compute bar width automatically."
"Check for non-numeric types in Hist."
"Or try providing width option."
)
options = _Underride(options, label=hist.label)
options = _Underride(options, align='center')
if options['align'] == 'left':
options['align'] = 'edge'
elif options['align'] == 'right':
options['align'] = 'edge'
options['width'] *= -1
Bar(xs, ys, **options)
def Hists(hists, **options):
"""Plots two histograms as interleaved bar plots.
Options are passed along for all PMFs. If you want different
options for each pmf, make multiple calls to Pmf.
Args:
hists: list of two Hist or Pmf objects
options: keyword args passed to plt.plot
"""
for hist in hists:
Hist(hist, **options)
def Pmf(pmf, **options):
"""Plots a Pmf or Hist as a line.
Args:
pmf: Hist or Pmf object
options: keyword args passed to plt.plot
"""
xs, ys = pmf.Render()
low, high = min(xs), max(xs)
width = options.pop('width', None)
if width is None:
try:
width = np.diff(xs).min()
except TypeError:
warnings.warn("Pmf: Can't compute bar width automatically."
"Check for non-numeric types in Pmf."
"Or try providing width option.")
points = []
lastx = np.nan
lasty = 0
for x, y in zip(xs, ys):
if (x - lastx) > 1e-5:
points.append((lastx, 0))
points.append((x, 0))
points.append((x, lasty))
points.append((x, y))
points.append((x+width, y))
lastx = x + width
lasty = y
points.append((lastx, 0))
pxs, pys = zip(*points)
align = options.pop('align', 'center')
if align == 'center':
pxs = np.array(pxs) - width/2.0
if align == 'right':
pxs = np.array(pxs) - width
options = _Underride(options, label=pmf.label)
Plot(pxs, pys, **options)
def Pmfs(pmfs, **options):
"""Plots a sequence of PMFs.
Options are passed along for all PMFs. If you want different
options for each pmf, make multiple calls to Pmf.
Args:
pmfs: sequence of PMF objects
options: keyword args passed to plt.plot
"""
for pmf in pmfs:
Pmf(pmf, **options)
def Diff(t):
"""Compute the differences between adjacent elements in a sequence.
Args:
t: sequence of number
Returns:
sequence of differences (length one less than t)
"""
diffs = [t[i+1] - t[i] for i in range(len(t)-1)]
return diffs
def Cdf(cdf, complement=False, transform=None, **options):
"""Plots a CDF as a line.
Args:
cdf: Cdf object
complement: boolean, whether to plot the complementary CDF
transform: string, one of 'exponential', 'pareto', 'weibull', 'gumbel'
options: keyword args passed to plt.plot
Returns:
dictionary with the scale options that should be passed to
Config, Show or Save.
"""
xs, ps = cdf.Render()
xs = np.asarray(xs)
ps = np.asarray(ps)
scale = dict(xscale='linear', yscale='linear')
for s in ['xscale', 'yscale']:
if s in options:
scale[s] = options.pop(s)
if transform == 'exponential':
complement = True
scale['yscale'] = 'log'
if transform == 'pareto':
complement = True
scale['yscale'] = 'log'
scale['xscale'] = 'log'
if complement:
ps = [1.0-p for p in ps]
if transform == 'weibull':
xs = np.delete(xs, -1)
ps = np.delete(ps, -1)
ps = [-math.log(1.0-p) for p in ps]
scale['xscale'] = 'log'
scale['yscale'] = 'log'
if transform == 'gumbel':
xs = np.delete(xs, 0)
ps = np.delete(ps, 0)
ps = [-math.log(p) for p in ps]
scale['yscale'] = 'log'
options = _Underride(options, label=cdf.label)
Plot(xs, ps, **options)
return scale
def Cdfs(cdfs, complement=False, transform=None, **options):
"""Plots a sequence of CDFs.
cdfs: sequence of CDF objects
complement: boolean, whether to plot the complementary CDF
transform: string, one of 'exponential', 'pareto', 'weibull', 'gumbel'
options: keyword args passed to plt.plot
"""
for cdf in cdfs:
Cdf(cdf, complement, transform, **options)
def Contour(obj, pcolor=False, contour=True, imshow=False, **options):
"""Makes a contour plot.
d: map from (x, y) to z, or object that provides GetDict
pcolor: boolean, whether to make a pseudocolor plot
contour: boolean, whether to make a contour plot
imshow: boolean, whether to use plt.imshow
options: keyword args passed to plt.pcolor and/or plt.contour
"""
try:
d = obj.GetDict()
except AttributeError:
d = obj
_Underride(options, linewidth=3, cmap=matplotlib.cm.Blues)
xs, ys = zip(*d.keys())
xs = sorted(set(xs))
ys = sorted(set(ys))
X, Y = np.meshgrid(xs, ys)
func = lambda x, y: d.get((x, y), 0)
func = np.vectorize(func)
Z = func(X, Y)
x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
axes = plt.gca()
axes.xaxis.set_major_formatter(x_formatter)
if pcolor:
plt.pcolormesh(X, Y, Z, **options)
if contour:
cs = plt.contour(X, Y, Z, **options)
plt.clabel(cs, inline=1, fontsize=10)
if imshow:
extent = xs[0], xs[-1], ys[0], ys[-1]
plt.imshow(Z, extent=extent, **options)
def Pcolor(xs, ys, zs, pcolor=True, contour=False, **options):
"""Makes a pseudocolor plot.
xs:
ys:
zs:
pcolor: boolean, whether to make a pseudocolor plot
contour: boolean, whether to make a contour plot
options: keyword args passed to plt.pcolor and/or plt.contour
"""
_Underride(options, linewidth=3, cmap=matplotlib.cm.Blues)
X, Y = np.meshgrid(xs, ys)
Z = zs
x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
axes = plt.gca()
axes.xaxis.set_major_formatter(x_formatter)
if pcolor:
plt.pcolormesh(X, Y, Z, **options)
if contour:
cs = plt.contour(X, Y, Z, **options)
plt.clabel(cs, inline=1, fontsize=10)
def Text(x, y, s, **options):
"""Puts text in a figure.
x: number
y: number
s: string
options: keyword args passed to plt.text
"""
options = _Underride(options,
fontsize=16,
verticalalignment='top',
horizontalalignment='left')
plt.text(x, y, s, **options)
LEGEND = True
LOC = None
def Config(**options):
"""Configures the plot.
Pulls options out of the option dictionary and passes them to
the corresponding plt functions.
"""
names = ['title', 'xlabel', 'ylabel', 'xscale', 'yscale',
'xticks', 'yticks', 'axis', 'xlim', 'ylim']
for name in names:
if name in options:
getattr(plt, name)(options[name])
global LEGEND
LEGEND = options.get('legend', LEGEND)
# see if there are any elements with labels;
# if not, don't draw a legend
ax = plt.gca()
handles, labels = ax.get_legend_handles_labels()
if LEGEND and len(labels) > 0:
global LOC
LOC = options.get('loc', LOC)
frameon = options.get('frameon', True)
try:
plt.legend(loc=LOC, frameon=frameon)
except UserWarning:
pass
# x and y ticklabels can be made invisible
val = options.get('xticklabels', None)
if val is not None:
if val == 'invisible':
ax = plt.gca()
labels = ax.get_xticklabels()
plt.setp(labels, visible=False)
val = options.get('yticklabels', None)
if val is not None:
if val == 'invisible':
ax = plt.gca()
labels = ax.get_yticklabels()
plt.setp(labels, visible=False)
def set_font_size(title_size=16, label_size=16, ticklabel_size=14, legend_size=14):
"""Set font sizes for the title, labels, ticklabels, and legend.
"""
def set_text_size(texts, size):
for text in texts:
text.set_size(size)
ax = plt.gca()
# TODO: Make this function more robust if any of these elements
# is missing.
# title
ax.title.set_size(title_size)
# x axis
ax.xaxis.label.set_size(label_size)
set_text_size(ax.xaxis.get_ticklabels(), ticklabel_size)
# y axis
ax.yaxis.label.set_size(label_size)
set_text_size(ax.yaxis.get_ticklabels(), ticklabel_size)
# legend
legend = ax.get_legend()
if legend is not None:
set_text_size(legend.texts, legend_size)
def bigger_text():
sizes = dict(title_size=16, label_size=16, ticklabel_size=14, legend_size=14)
set_font_size(**sizes)
def Show(**options):
"""Shows the plot.
For options, see Config.
options: keyword args used to invoke various plt functions
"""
clf = options.pop('clf', True)
Config(**options)
plt.show()
if clf:
Clf()
def Plotly(**options):
"""Shows the plot.
For options, see Config.
options: keyword args used to invoke various plt functions
"""
clf = options.pop('clf', True)
Config(**options)
import plotly.plotly as plotly
url = plotly.plot_mpl(plt.gcf())
if clf:
Clf()
return url
def Save(root=None, formats=None, **options):
"""Saves the plot in the given formats and clears the figure.
For options, see Config.
Note: With a capital S, this is the original save, maintained for
compatibility. New code should use save(), which works better
with my newer code, especially in Jupyter notebooks.
Args:
root: string filename root
formats: list of string formats
options: keyword args used to invoke various plt functions
"""
clf = options.pop('clf', True)
save_options = {}
for option in ['bbox_inches', 'pad_inches']:
if option in options:
save_options[option] = options.pop(option)
# TODO: falling Config inside Save was probably a mistake, but removing
# it will require some work
Config(**options)
if formats is None:
formats = ['pdf', 'png']
try:
formats.remove('plotly')
Plotly(clf=False)
except ValueError:
pass
if root:
for fmt in formats:
SaveFormat(root, fmt, **save_options)
if clf:
Clf()
def save(root, formats=None, **options):
"""Saves the plot in the given formats and clears the figure.
For options, see plt.savefig.
Args:
root: string filename root
formats: list of string formats
options: keyword args passed to plt.savefig
"""
if formats is None:
formats = ['pdf', 'png']
try:
formats.remove('plotly')
Plotly(clf=False)
except ValueError:
pass
for fmt in formats:
SaveFormat(root, fmt, **options)
def SaveFormat(root, fmt='eps', **options):
"""Writes the current figure to a file in the given format.
Args:
root: string filename root
fmt: string format
"""
_Underride(options, dpi=300)
filename = '%s.%s' % (root, fmt)
print('Writing', filename)
plt.savefig(filename, format=fmt, **options)
# provide aliases for calling functions with lower-case names
preplot = PrePlot
subplot = SubPlot
clf = Clf
figure = Figure
plot = Plot
vlines = Vlines
hlines = Hlines
fill_between = FillBetween
text = Text
scatter = Scatter
pmf = Pmf
pmfs = Pmfs
hist = Hist
hists = Hists
diff = Diff
cdf = Cdf
cdfs = Cdfs
contour = Contour
pcolor = Pcolor
config = Config
show = Show
def main():
color_iter = _Brewer.ColorGenerator(7)
for color in color_iter:
print(color)
if __name__ == '__main__':
main()