-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext_1.py
156 lines (118 loc) · 4.73 KB
/
text_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# IMPORT LIBRARIES
import pandas as pd
import numpy as np
import streamlit as st
from io import BytesIO
import click
import spacy
import docx2txt
import pdfplumber
from pickle import load
import requests
import re
import os
import sklearn
import PyPDF2
import nltk
import pickle as pk
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('maxent_ne_chunker')
nltk.download('words')
nltk.download('wordnet')
nltk.download('stopwords')
nltk.download('omw-1.4')
import en_core_web_sm
nlp = en_core_web_sm.load()
from nltk.tokenize import RegexpTokenizer
from nltk import word_tokenize
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords
import matplotlib.pyplot as plt
stop=set(stopwords.words('english'))
from spacy.matcher import Matcher
matcher = Matcher(nlp.vocab)
from sklearn.feature_extraction.text import TfidfVectorizer
#----------------------------------------------------------------------------------------------------
st.title(' RESUME CLASSIFICATION ')
st.markdown('<style>h1{color: Green;}</style>', unsafe_allow_html=True)
st.subheader('Group 3 Welcomes you ')
# FUNCTIONS
def extract_skills(resume_text):
nlp_text = nlp(resume_text)
noun_chunks = nlp_text.noun_chunks
tokens = [token.text for token in nlp_text if not token.is_stop] # removing stop words and implementing word tokenization
data = pd.read_csv(r"C:\Users\Care\Desktop\p387\krishan\Clean_resumes.csv") # reading the csv file
skills = list(data.columns.values)# extract values
skillset = []
for token in tokens: # check for one-grams (example: python)
if token.lower() in skills:
skillset.append(token)
for token in noun_chunks: # check for bi-grams and tri-grams (example: machine learning)
token = token.text.lower().strip()
if token in skills:
skillset.append(token)
return [i.capitalize() for i in set([i.lower() for i in skillset])]
def getText(filename):
# Create empty string
fullText = ''
if filename.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
doc = docx2txt.process(filename)
for para in doc:
fullText = fullText + para
else:
with pdfplumber.open(filename) as pdf_file:
pdoc = PyPDF2.PdfReader(filename)
number_of_pages = pdoc.getNumPages()
page = pdoc.pages[0]
page_content = page.extractText()
for paragraph in page_content:
fullText = fullText + paragraph
return (fullText)
def display(doc_file):
resume = []
if doc_file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
resume.append(docx2txt.process(doc_file))
else:
with pdfplumber.open(doc_file) as pdf:
pages=pdf.pages[0]
resume.append(pages.extract_text())
return resume
def preprocess(sentence):
sentence=str(sentence)
sentence = sentence.lower()
sentence=sentence.replace('{html}',"")
cleanr = re.compile('<.*?>')
cleantext = re.sub(cleanr, '', sentence)
rem_url=re.sub(r'http\S+', '',cleantext)
rem_num = re.sub('[0-9]+', '', rem_url)
tokenizer = RegexpTokenizer(r'\w+')
tokens = tokenizer.tokenize(rem_num)
filtered_words = [w for w in tokens if len(w) > 2 if not w in stopwords.words('english')]
lemmatizer = WordNetLemmatizer()
lemma_words=[lemmatizer.lemmatize(w) for w in filtered_words]
return " ".join(lemma_words)
file_type=pd.DataFrame([], columns=['Uploaded File', 'Predicted Profile','Skills',])
filename = []
predicted = []
skills = []
#-------------------------------------------------------------------------------------------------
# MAIN CODE
import pickle as pk
model = pk.load(open(r"C:\Users\Care\Desktop\p387\krishan\Model.pkl", 'rb'))
Vectorizer = pk.load(open(r"C:\Users\Care\Desktop\p387\krishan\vect.pkl", 'rb'))
upload_file = st.file_uploader('Upload Your Resumes',
type= ['docx','pdf'],accept_multiple_files=True)
for doc_file in upload_file:
if doc_file is not None:
filename.append(doc_file.name)
cleaned=preprocess(display(doc_file))
prediction = model.predict(Vectorizer.transform([cleaned]))[0]
predicted.append(prediction)
extText = getText(doc_file)
skills.append(extract_skills(extText))
if len(predicted) > 0:
file_type['Uploaded File'] = filename
file_type['Skills'] = skills
file_type['Predicted Profile'] = predicted
st.table(file_type.style.format())