forked from DeifiliaTo/PanguWeather
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
53 lines (45 loc) · 2.12 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import sys
import matplotlib.pyplot as plt
import numpy as np
import torch
from networks import pangu
from utils import data_loader_multifiles
model_path = '/hkfs/work/workspace/scratch/ke4365-pangu/pangu-weather/trained_models/pangum1.pt'
results_directory = '/hkfs/work/workspace/scratch/ke4365-pangu/pangu-weather/results/'
sys.path.append('/hkfs/work/workspace/scratch/ke4365-pangu/pangu-weather/networks')
model = pangu.PanguModel()
try:
# Load the model checkpoint
checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
model.load_state_dict(checkpoint)
except RuntimeError as e:
# Handle the case where the model was trained with DataParallel
if 'module.' in str(e):
new_checkpoint = {}
for key, value in checkpoint.items():
new_key = key.replace('module.', '') if 'module.' in key else key
new_checkpoint[new_key] = value
model.load_state_dict(new_checkpoint)
else:
raise # Re-raise the error if it's not related to 'module.'
params = {}
params['model_path'] = '/hkfs/work/workspace/scratch/ke4365-pangu/pangu-weather/trained_models/pangum1.pt'
params['train_data_path'] = '/hkfs/work/workspace/scratch/ke4365-pangu/PANGU_ERA5_data_v0/train/'
params['valid_data_path'] = '/hkfs/work/workspace/scratch/ke4365-pangu/PANGU_ERA5_data_v0/valid/'
params['pressure_static_data_path'] = '/hkfs/work/workspace/scratch/ke4365-pangu/PANGU_ERA5_data_v0/static/pressure_means.h5'
params['surface_static_data_path'] = '/hkfs/work/workspace/scratch/ke4365-pangu/PANGU_ERA5_data_v0/static/surface_means.h5'
params['dt'] = 1
params['n_history'] = 1
params['in_channels'] = 8
params['out_channels'] = 8
params['roll'] = False
params['add_noise'] = False
params['batch_size'] = 1
params['num_data_workers'] = 2
params['data_distributed'] = True
patch_size = (2, 4, 4)
train_data_loader, train_dataset, train_sampler = data_loader_multifiles.get_data_loader(params, params['train_data_path'], False, train=True, device='cpu', patch_size=patch_size)
data = next(iter(train_data_loader))
result = model(data[0], data[1])
plt.pcolor(np.flipud(result[1][0][1].detach()))
plt.colorbar()