-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgrader.py
86 lines (80 loc) · 3.64 KB
/
grader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import os
import pickle
from heapq import heappush
import torch
from loguru import logger
from tqdm import tqdm
from eval import *
from superposed.llama.metrics import *
from superposed.llama.generation import Llama
if __name__ == "__main__":
# UPDATE THESE PARAMETERS #
result_file = "./owt/p15_d3_ngram4_llama7B_owt.pkl" # File containing generations to evaluate
mode = "eval" # Evaluation mode (set to "eval" or "tune")
prompt_len = 15 # Length of prefixes
logger.info("File: " + result_file)
logger.info("Mode: " + mode)
logger.info("Prompt Length: " + str(prompt_len))
# Load model
reg_model = Llama.build(ckpt_dir="./70B/",
tokenizer_path='./7B/tokenizer.model',
max_seq_len=100,
max_batch_size=64,
device=None,
model_parallel_size=8)
# Load result file
filename, ext = os.path.splitext(result_file)
if ext == ".pt":
r = torch.load(result_file)
elif ext == ".pkl":
with open(result_file, "rb") as f:
r = pickle.load(f)
# Main loop
loop = tqdm(total=len(r), position=0, leave=True)
if mode == "tune":
# Evaluate results for a file containing a dictionary of {parameters : (n_prompts, n_drafts, seq_len)}
heap = []
# Loop over every hyperparameter combination
for param in r:
seqs = r[param]
n_prompts, n_drafts, gen_len = seqs.shape
# Calculate and average perplexity across drafts
output_ppl = calculate_perplexity(reg_model,
seqs.reshape(n_prompts * n_drafts, -1),
prompt_len=prompt_len,
bsz=64,
marker=False)
output_ppl = torch.mean(output_ppl)
# Store perplexity values and the corresponding hyperparameters
heappush(heap, (output_ppl.item(), param))
# Update loop info
loop.set_description(f"Average Perplexity: {output_ppl.item():.4f}")
loop.update(1)
# Save results
logger.info("Saving tuning results...")
with open(f"{filename}_llama_tune.pkl", "wb") as f:
pickle.dump(heap, f)
elif mode == "eval":
# Evaluate results for single file containing a tensor (n_prompts, n_drafts, seq_len)
with torch.no_grad():
n_prompts, n_drafts, gen_len = r.shape
# Calculate perplexity over all generations
output_ppl = calculate_perplexity(reg_model,
r.reshape(n_prompts * n_drafts, -1),
prompt_len=prompt_len,
bsz=64,
marker=True)
output_ppl = output_ppl.reshape(n_prompts, n_drafts)
# Calculate average perplexity by draft
draft_avg = torch.mean(output_ppl, dim=0)
draft_std = torch.std(output_ppl, dim=0)
# Calculate average perplexity of best generations
best_ppl = output_ppl.min(dim=-1)
best_avg = torch.mean(best_ppl[0])
best_std = torch.std(best_ppl[0])
logger.info(f"Draft Avg: {draft_avg} Draft Std: {draft_std}")
logger.info(f"Best Avg: {best_avg} Best Std: {best_std}")
# Save perplexities of each generation
torch.save(output_ppl, f"{filename}_ppl.pt")
else:
logger.error("Use `eval` or `tune` as evaluation modes")