forked from danielgordon10/re3-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathCaffeLSTMCell.py
108 lines (87 loc) · 4.21 KB
/
CaffeLSTMCell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import tensorflow as tf
class CaffeLSTMCell(tf.contrib.rnn.RNNCell):
def __init__(self, num_units,
initializer=None,
activation=tf.nn.tanh):
"""Initialize the parameters for an LSTM cell.
Args:
num_units: int, The number of units in the LSTM cell
initializer: (optional) The initializer to use for the weight and
projection matrices.
activation: Activation function of the inner states.
"""
self._num_units = num_units
self._initializer = initializer
self._activation = activation
self._state_size = tf.contrib.rnn.LSTMStateTuple(num_units, num_units)
self._output_size = num_units
@property
def state_size(self):
return self._state_size
@property
def output_size(self):
return self._output_size
def __call__(self, inputs, state, scope=None):
"""Run one step of LSTM.
Args:
inputs: input Tensor, 2D, batch x num_units.
state: This must be a tuple of state Tensors,
both `2-D`, with column sizes `c_state` and `m_state`.
scope: VariableScope for the created subgraph; defaults to "lstm_cell".
Returns:
A tuple containing:
- A `2-D, [batch x output_dim]`, Tensor representing the output of the
LSTM after reading `inputs` when previous state was `state`.
Here output_dim is:
num_proj if num_proj was set,
num_units otherwise.
- Tensor(s) representing the new state of LSTM after reading `inputs` when
the previous state was `state`. Same type and shape(s) as `state`.
Raises:
ValueError: If input size cannot be inferred from inputs via
static shape inference.
"""
with tf.variable_scope('LSTM'):
(cell_state_prev, cell_outputs_prev) = state
dtype = inputs.dtype
lstm_concat = tf.concat([inputs, cell_outputs_prev], axis=1)
inputs_shape = lstm_concat.get_shape().as_list()[1]
peephole_concat = tf.concat([lstm_concat, cell_state_prev], axis=1)
peephole_shape = peephole_concat.get_shape().as_list()[1]
with tf.variable_scope('block_input'):
weights = tf.get_variable('weights',
shape=[inputs_shape, self._num_units],
dtype=dtype, initializer=self._initializer)
biases = tf.get_variable('biases', shape=[self._num_units], dtype=dtype,
initializer=tf.zeros_initializer())
block_input = self._activation(tf.matmul(lstm_concat, weights) + biases)
with tf.variable_scope('input_gate'):
weights = tf.get_variable('weights',
shape=[peephole_shape, self._num_units],
dtype=dtype, initializer=self._initializer)
biases = tf.get_variable('biases', shape=[self._num_units], dtype=dtype,
initializer=tf.zeros_initializer())
input_gate = tf.nn.sigmoid(tf.matmul(peephole_concat, weights) + biases)
input_mult = input_gate * block_input
with tf.variable_scope('forget_gate'):
weights = tf.get_variable('weights',
shape=[peephole_shape, self._num_units],
dtype=dtype, initializer=self._initializer)
biases = tf.get_variable('biases', shape=[self._num_units], dtype=dtype,
initializer=tf.ones_initializer())
forget_gate = tf.nn.sigmoid(tf.matmul(peephole_concat, weights) + biases)
forget_mult = forget_gate * cell_state_prev
cell_state_new = input_mult + forget_mult
cell_state_activated = self._activation(cell_state_new)
with tf.variable_scope('output_gate'):
output_concat = tf.concat([lstm_concat, cell_state_new], axis=1)
output_concat_shape = output_concat.get_shape().as_list()[1]
weights = tf.get_variable('weights',
shape=[output_concat_shape, self._num_units],
dtype=dtype, initializer=self._initializer)
biases = tf.get_variable('biases', shape=[self._num_units], dtype=dtype,
initializer=tf.zeros_initializer())
output_gate = tf.nn.sigmoid(tf.matmul(output_concat, weights) + biases)
cell_outputs_new = output_gate * cell_state_activated
new_state = tf.contrib.rnn.LSTMStateTuple(cell_state_new, cell_outputs_new)
return cell_outputs_new, new_state