forked from danielgordon10/re3-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathunrolled_solver.py
318 lines (283 loc) · 14.8 KB
/
unrolled_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import pdb
import argparse
import cv2
import glob
import numpy as np
import os
import random
import struct
import sys
import tensorflow as tf
import time
import threading
from io import BytesIO
import sys
import os.path
sys.path.append(os.path.abspath(os.path.join(
os.path.dirname(__file__), os.path.pardir)))
import tf_dataset
import test_net
from tracker import network
from tracker import re3_tracker
from re3_utils.util import bb_util
from re3_utils.util import im_util
from re3_utils.tensorflow_util import tf_util
from re3_utils.util import drawing
from re3_utils.util import IOU
from constants import CROP_PAD
from constants import CROP_SIZE
from constants import LSTM_SIZE
from constants import GPU_ID
from constants import LOG_DIR
from constants import OUTPUT_WIDTH
from constants import OUTPUT_HEIGHT
HOST = 'localhost'
NUM_ITERATIONS = int(1e6)
PORT = 9997
LEARNING_RATE = 1e-5
def main(FLAGS):
global PORT, delta, REPLAY_BUFFER_SIZE
delta = FLAGS.delta
batchSize = FLAGS.batch_size
timing = FLAGS.timing
debug = FLAGS.debug or FLAGS.output
PORT = FLAGS.port
os.environ['CUDA_VISIBLE_DEVICES'] = str(FLAGS.cuda_visible_devices)
np.set_printoptions(suppress=True)
np.set_printoptions(precision=4)
# Tensorflow setup
if not os.path.exists(LOG_DIR):
os.makedirs(LOG_DIR)
if not os.path.exists(LOG_DIR + '/checkpoints'):
os.makedirs(LOG_DIR + '/checkpoints')
tf.Graph().as_default()
tf.logging.set_verbosity(tf.logging.INFO)
sess = tf_util.Session()
# Create the nodes for single image forward passes for learning to fix mistakes.
# Parameters here are shared with the learned network.
if ',' in FLAGS.cuda_visible_devices:
with tf.device('/gpu:1'):
forwardNetworkImagePlaceholder = tf.placeholder(tf.uint8, shape=(2, CROP_SIZE, CROP_SIZE, 3))
prevLstmState = tuple([tf.placeholder(tf.float32, shape=(1, LSTM_SIZE)) for _ in range(4)])
initialLstmState = tuple([np.zeros((1, LSTM_SIZE)) for _ in range(4)])
networkOutputs, state1, state2 = network.inference(
forwardNetworkImagePlaceholder, num_unrolls=1, train=False,
prevLstmState=prevLstmState, reuse=False)
else:
forwardNetworkImagePlaceholder = tf.placeholder(tf.uint8, shape=(2, CROP_SIZE, CROP_SIZE, 3))
prevLstmState = tuple([tf.placeholder(tf.float32, shape=(1, LSTM_SIZE)) for _ in range(4)])
initialLstmState = tuple([np.zeros((1, LSTM_SIZE)) for _ in range(4)])
networkOutputs, state1, state2 = network.inference(
forwardNetworkImagePlaceholder, num_unrolls=1, train=False,
prevLstmState=prevLstmState, reuse=False)
tf_dataset_obj = tf_dataset.Dataset(sess, delta, batchSize * 2, PORT,
debug=FLAGS.debug)
tf_dataset_obj.initialize_tf_placeholders(
forwardNetworkImagePlaceholder, prevLstmState, networkOutputs, state1, state2)
tf_dataset_iterator = tf_dataset_obj.get_dataset(batchSize)
imageBatch, labelsBatch = tf_dataset_iterator.get_next()
imageBatch = tf.reshape(imageBatch, (batchSize * delta * 2, CROP_SIZE, CROP_SIZE, 3))
labelsBatch = tf.reshape(labelsBatch, (batchSize * delta, -1))
learningRate = tf.placeholder(tf.float32)
imagePlaceholder = tf.placeholder(tf.uint8, shape=(batchSize, delta * 2, CROP_SIZE, CROP_SIZE, 3))
labelPlaceholder = tf.placeholder(tf.float32, shape=(batchSize, delta, 4))
if ',' in FLAGS.cuda_visible_devices:
with tf.device('/gpu:0'):
tfOutputs = network.inference(imageBatch, num_unrolls=delta, train=True, reuse=True)
tfLossFull, tfLoss = network.loss(tfOutputs, labelsBatch)
train_op = network.training(tfLossFull, learningRate)
else:
tfOutputs = network.inference(imageBatch, num_unrolls=delta, train=True, reuse=True)
tfLossFull, tfLoss = network.loss(tfOutputs, labelsBatch)
train_op = network.training(tfLossFull, learningRate)
loss_summary_op = tf.summary.merge([
tf.summary.scalar('loss', tfLoss),
tf.summary.scalar('l2_regularizer', tfLossFull - tfLoss),
])
train_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
init = tf.global_variables_initializer()
saver = tf.train.Saver()
longSaver = tf.train.Saver()
# Initialize the network and load saved parameters.
sess.run(init)
startIter = 0
if FLAGS.restore:
print('Restoring')
startIter = tf_util.restore_from_dir(sess, os.path.join(LOG_DIR, 'checkpoints'))
if not debug:
tt = time.localtime()
time_str = ('%04d_%02d_%02d_%02d_%02d_%02d' %
(tt.tm_year, tt.tm_mon, tt.tm_mday, tt.tm_hour, tt.tm_min, tt.tm_sec))
summary_writer = tf.summary.FileWriter(LOG_DIR + '/train/' + time_str +
'_n_' + str(delta) + '_b_' + str(batchSize), sess.graph)
summary_full = tf.summary.merge_all()
conv_var_list = [v for v in tf.trainable_variables() if 'conv' in v.name and 'weight' in v.name and
(v.get_shape().as_list()[0] != 1 or v.get_shape().as_list()[1] != 1)]
for var in conv_var_list:
tf_util.conv_variable_summaries(var, scope=var.name.replace('/', '_')[:-2])
summary_with_images = tf.summary.merge_all()
# Logging stuff
robustness_ph = tf.placeholder(tf.float32, shape=[])
lost_targets_ph = tf.placeholder(tf.float32, shape=[])
mean_iou_ph = tf.placeholder(tf.float32, shape=[])
avg_ph = tf.placeholder(tf.float32, shape=[])
if FLAGS.run_val:
val_gpu = None if FLAGS.val_device == '0' else FLAGS.val_device
test_tracker = re3_tracker.CopiedRe3Tracker(sess, train_vars, val_gpu)
test_runner = test_net.TestTrackerRunner(test_tracker)
with tf.name_scope('test'):
test_summary_op = tf.summary.merge([
tf.summary.scalar('robustness', robustness_ph),
tf.summary.scalar('lost_targets', lost_targets_ph),
tf.summary.scalar('mean_iou', mean_iou_ph),
tf.summary.scalar('avg_iou_robustness', avg_ph),
])
if debug:
cv2.namedWindow('debug', cv2.WINDOW_NORMAL)
cv2.resizeWindow('debug', OUTPUT_WIDTH, OUTPUT_HEIGHT)
sess.graph.finalize()
try:
timeTotal = 0.000001
numIters = 0
iteration = startIter
# Run training iterations in the main thread.
while iteration < FLAGS.max_steps:
if (iteration - 1) % 10 == 0:
currentTimeStart = time.time()
startSolver = time.time()
if debug:
_, outputs, lossValue, images, labels, = sess.run([
train_op, tfOutputs, tfLoss, imageBatch, labelsBatch],
feed_dict={learningRate : LEARNING_RATE})
debug_feed_dict = {
imagePlaceholder : images,
labelPlaceholder : labels,
}
else:
if iteration % 10 == 0:
_, lossValue, loss_summary = sess.run([
train_op, tfLoss, loss_summary_op],
feed_dict={learningRate : LEARNING_RATE})
summary_writer.add_summary(loss_summary, iteration)
else:
_, lossValue = sess.run([train_op, tfLoss],
feed_dict={learningRate : LEARNING_RATE})
endSolver = time.time()
numIters += 1
iteration += 1
timeTotal += (endSolver - startSolver)
if timing and (iteration - 1) % 10 == 0:
print('Iteration: %d' % (iteration - 1))
print('Loss: %.3f' % lossValue)
print('Average Time: %.3f' % (timeTotal / numIters))
print('Current Time: %.3f' % (endSolver - startSolver))
if numIters > 20:
print('Current Average: %.3f' % ((time.time() - currentTimeStart) / 10))
print('')
# Save a checkpoint and remove old ones.
if iteration % 500 == 0 or iteration == FLAGS.max_steps:
checkpoint_file = os.path.join(LOG_DIR, 'checkpoints', 'model.ckpt')
saver.save(sess, checkpoint_file, global_step=iteration)
if FLAGS.clearSnapshots:
files = glob.glob(LOG_DIR + '/checkpoints/*')
for file in files:
basename = os.path.basename(file)
if os.path.isfile(file) and str(iteration) not in file and 'checkpoint' not in basename:
os.remove(file)
# Every once in a while save a checkpoint that isn't ever removed except by hand.
if iteration % 10000 == 0 or iteration == FLAGS.max_steps:
if not os.path.exists(LOG_DIR + '/checkpoints/long_checkpoints'):
os.makedirs(LOG_DIR + '/checkpoints/long_checkpoints')
checkpoint_file = os.path.join(LOG_DIR, 'checkpoints/long_checkpoints', 'model.ckpt')
longSaver.save(sess, checkpoint_file, global_step=iteration)
if not debug:
if (numIters == 1 or
iteration % 100 == 0 or
iteration == FLAGS.max_steps):
# Write out the full graph sometimes.
if (numIters == 1 or
iteration == FLAGS.max_steps):
print('Running detailed summary')
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
_, summary_str = sess.run([train_op, summary_with_images],
options=run_options,
run_metadata=run_metadata,
feed_dict={learningRate : LEARNING_RATE})
summary_writer.add_run_metadata(run_metadata, 'step_%07d' % iteration)
elif iteration % 1000 == 0:
_, summary_str = sess.run([train_op, summary_with_images],
feed_dict={learningRate : LEARNING_RATE})
print('Running image summary')
else:
print('Running summary')
_, summary_str = sess.run([train_op, summary_full],
feed_dict={learningRate : LEARNING_RATE})
summary_writer.add_summary(summary_str, iteration)
summary_writer.flush()
if (FLAGS.run_val and (numIters == 1 or iteration % 500 == 0)):
# Run a validation set eval in a separate thread.
def test_func(test_iter_on):
print('Starting test iter', test_iter_on)
test_runner.reset()
result = test_runner.run_test(dataset=FLAGS.val_dataset, display=False)
summary_str = sess.run(test_summary_op, feed_dict={
robustness_ph : result['robustness'],
lost_targets_ph : result['lostTarget'],
mean_iou_ph : result['meanIou'],
avg_ph : (result['meanIou'] + result['robustness']) / 2,
})
summary_writer.add_summary(summary_str, test_iter_on)
os.remove('results.json')
print('Ending test iter', test_iter_on)
test_thread = threading.Thread(target=test_func, args=(iteration,))
test_thread.start()
if FLAGS.output:
# Look at some of the outputs.
print('new batch')
images = debug_feed_dict[imagePlaceholder].astype(np.uint8).reshape(
(batchSize, delta, 2, CROP_SIZE, CROP_SIZE, 3))
labels = debug_feed_dict[labelPlaceholder].reshape(
(batchSize, delta, 4))
outputs = outputs.reshape((batchSize, delta, 4))
for bb in range(batchSize):
for dd in range(delta):
image0 = images[bb,dd,0,...]
image1 = images[bb,dd,1,...]
label = labels[bb,dd,:]
xyxyLabel = label / 10
labelBox = xyxyLabel * CROP_PAD
output = outputs[bb,dd,...]
xyxyPred = output / 10
outputBox = xyxyPred * CROP_PAD
drawing.drawRect(image0, bb_util.xywh_to_xyxy(np.full((4,1), .5) * CROP_SIZE), 2, [255,0,0])
drawing.drawRect(image1, xyxyLabel * CROP_SIZE, 2, [0,255,0])
drawing.drawRect(image1, xyxyPred * CROP_SIZE, 2, [255,0,0])
plots = [image0, image1]
subplot = drawing.subplot(plots, 1, 2, outputWidth=OUTPUT_WIDTH, outputHeight=OUTPUT_HEIGHT, border=5)
cv2.imshow('debug', subplot[:,:,::-1])
cv2.waitKey(0)
except:
# Save if error or killed by ctrl-c.
if not debug:
print('Saving...')
checkpoint_file = os.path.join(LOG_DIR, 'checkpoints', 'model.ckpt')
saver.save(sess, checkpoint_file, global_step=iteration)
raise
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Training for Re3.')
parser.add_argument('-n', '--num_unrolls', action='store', default=2, dest='delta', type=int)
parser.add_argument('-b', '--batch_size', action='store', default=64, type=int)
parser.add_argument('-v', '--cuda_visible_devices', type=str, default=str(GPU_ID), help='Device number or string')
parser.add_argument('-r', '--restore', action='store_true', default=False)
parser.add_argument('-d', '--debug', action='store_true', default=False)
parser.add_argument('-t', '--timing', action='store_true', default=False)
parser.add_argument('-o', '--output', action='store_true', default=False)
parser.add_argument('-c', '--clear_snapshots', action='store_true', default=False, dest='clearSnapshots')
parser.add_argument('-p', '--port', action='store', default=9987, dest='port', type=int)
parser.add_argument('--run_val', action='store_true', default=False)
parser.add_argument('--val_dataset', type=str, default='vot', help='Dataset to test on.')
parser.add_argument('--val_device', type=str, default='0', help='Device number or string for val process to use.')
parser.add_argument('-m', '--max_steps', type=int, default=NUM_ITERATIONS, help='Number of steps to run trainer.')
FLAGS = parser.parse_args()
main(FLAGS)