forked from ehsanik/touchTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
126 lines (108 loc) · 4.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
import logging
import random
import os
import matplotlib as mpl
mpl.use('Agg')
from pathlib import Path
import numpy as np
from solvers import train, test, save_gt_force
from utils.arg_parser import parse_args
def get_dataset(args):
train_dataset = args.dataset(args, train=True)
val_dataset = args.dataset(args, train=False)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, pin_memory=True)
test_shuffle = True
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size,
shuffle=test_shuffle, num_workers=args.workers, pin_memory=True)
return train_loader, val_loader
def get_model_and_loss(args):
model = args.model(args)
restarting_epoch = 0
if args.gpu_ids != -1:
model = model.cuda()
reload_adr = None
args.final_reload = None
if args.reload:
reload_adr = args.reload
elif args.reload_from_title is not None:
file = [f for f in Path(os.path.join(args.data, 'cache')).glob('**/' + args.reload_from_title)]
assert len(file) == 1
file = file[0]
all_saved_models = [str(f) for f in file.glob('**/*.pytar')]
epoch_indices = [int(mod.split('_')[-1].replace('.pytar', '')) for mod in all_saved_models]
if args.reload_from_title_epoch > 0:
latest_index = epoch_indices.index(args.reload_from_title_epoch)
else:
latest_index = np.argmax(np.array(epoch_indices))
reload_adr = all_saved_models[latest_index]
print('Exact Address is:', reload_adr)
if reload_adr is not None:
if args.gpu_ids == -1:
loaded_weights = torch.load(reload_adr, map_location='cpu')
else:
loaded_weights = torch.load(reload_adr)
args.final_reload = reload_adr
model.load_state_dict(loaded_weights, strict=args.strict)
epoch_index = reload_adr.split('_')[-1].replace('.pytar', '')
try:
epoch_index = int(epoch_index)
except Exception:
epoch_index = 0
restarting_epoch = epoch_index
print('Restarting from epoch', restarting_epoch)
if not args.strict:
restarting_epoch = 0
if args.manual_epoch is not None:
restarting_epoch = args.manual_epoch
print('Manually setting the epoch', restarting_epoch)
loss = model.loss(args)
if args.gpu_ids != -1:
loss = loss.cuda()
logging.info('Model: {}'.format(model))
logging.info('Loss: {}'.format(loss))
return model, loss, restarting_epoch
def main():
args = parse_args()
random.seed(args.seed)
torch.manual_seed(args.seed)
logging.info('Reading dataset metadata')
train_loader, val_loader = get_dataset(args)
logging.info('Constructing model')
model, loss, restarting_epoch = get_model_and_loss(args)
if args.mode == 'train':
optimizer = model.optimizer()
for i in range(restarting_epoch, args.epochs):
print('Epoch[', i, ']')
train.train_one_epoch(model, loss, optimizer, train_loader, i + 1,
args)
if i % args.save_frequency == 0:
torch.save(
model.state_dict(),
os.path.join(args.save,
'model_state_{:02d}.pytar'.format(i + 1)))
test.test_one_epoch(model, loss, val_loader, i + 1, args)
elif args.mode == 'test' or args.mode == 'testtrain':
if args.mode == 'testtrain':
val_loader = train_loader
if args.reload_dir is not None:
all_saved_models = [f for f in os.listdir(args.reload_dir) if f.endswith('.pytar')]
all_indices = [f.split('_')[-1].replace('.pytar', '') for f in all_saved_models]
int_indices = [int(f) for f in all_indices]
int_indices.sort()
for epoch in int_indices:
args.reload = os.path.join(args.reload_dir, 'model_state_{:02d}.pytar'.format(epoch))
print('Loaded ', args.reload, 'epoch', epoch)
model, loss, restarting_epoch = get_model_and_loss(args)
test.test_one_epoch(model, loss, val_loader, epoch, args)
else:
test.test_one_epoch(model, loss, val_loader, 0, args)
elif args.mode == 'savegtforce':
save_gt_force.save_gt_force(model, loss, train_loader, 0, args)
else:
raise NotImplementedError("Unsupported mode {}".format(args.mode))
if __name__ == "__main__":
main()