-
Notifications
You must be signed in to change notification settings - Fork 1
/
save_hidden_representation.py
103 lines (82 loc) · 3.31 KB
/
save_hidden_representation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
flags = tf.app.flags
FLAGS = flags.FLAGS
FLAGS.checkpoint_dir = './models/'
# Define layer to extract
# Define the shapes of x and y without specifying the batch size (None)
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
# Reshape the input vector to images of 28x28
x_image = tf.reshape(x, [-1,28,28,1])
# Define Convolution and Pooling
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
# Define the parameters of the logistic regression
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
#=====================================#
# FIRST LAYER
#=====================================#
# Initialize the weight of the first layer
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
# Define the computation of conv1 and pool1
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
#=====================================#
# SECOND LAYER
#=====================================#
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
#=====================================#
# FULLY CONNECTED LAYER
#=====================================#
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1_no_relu = tf.matmul(h_pool2_flat, W_fc1) + b_fc1
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# Add dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
#=====================================#
# LAST FULLY CONNECTED LAYER
#=====================================#
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
#----------------------------------------------------------#
saver = tf.train.Saver()
l_names = ['h_fc1_no_relu', 'y']
layers = [h_fc1_no_relu, y]
batch_size = 55
iterations = 1000
n_samples = mnist.train.labels.shape[0]
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
else:
raise Exception('No checkpoint was found')
for j, (name, layer) in enumerate(zip(l_names, layers)):
shape = layer.get_shape()[1:]
hidden_data = np.empty(np.append(batch_size*iterations, shape))
for i in range(iterations):
print('[{:05.1f}%] Extracting minibatch {}'.format(
100.0*(i+1+(j*iterations))*batch_size/(n_samples*len(layers)),i+1))
batch = mnist.train.next_batch(batch_size)
hidden_data[i*batch_size:(i+1)*batch_size] = layer.eval(
feed_dict={x: batch[0], keep_prob: 1.0})
np.save('./datasets/mnist_{}'.format(name), hidden_data)