-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_optimality.py
393 lines (322 loc) · 14.2 KB
/
test_optimality.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
from __future__ import division
import sys
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.metrics import roc_curve
from sklearn.metrics import auc
from cwc.models.density_estimators import MyMultivariateNormal
from cwc.visualization.cost_lines import plot_lower_envelope
import pandas as pd
np.random.seed(42)
plt.ion()
plt.rcParams['figure.figsize'] = (7,4)
plt.rcParams['figure.autolayout'] = True
colors = ['red', 'blue', 'white']
def normalized_brier_score(y, prediction):
return ((prediction/np.max(prediction) - y)**2).mean()
def one_vs_rest_roc_curve(y,p, pos_label=0):
"""Returns the roc curve of class 0 vs the rest of the classes"""
aux = np.zeros_like(y)
aux[y!=pos_label] = 1
return roc_curve(aux, p, pos_label=pos_label)
def convex_hull(points):
"""Computes the convex hull of a set of 2D points.
Input: an iterable sequence of (x, y) pairs representing the points.
Output: a list of vertices of the convex hull in counter-clockwise order,
starting from the vertex with the lexicographically smallest coordinates.
Implements Andrew's monotone chain algorithm. O(n log n) complexity.
Source code from:
https://en.wikibooks.org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain
"""
# Sort the points lexicographically (tuples are compared lexicographically).
# Remove duplicates to detect the case we have just one unique point.
points = sorted(set(points))
# Boring case: no points or a single point, possibly repeated multiple times.
if len(points) <= 1:
return points
# 2D cross product of OA and OB vectors, i.e. z-component of their 3D cross product.
# Returns a positive value, if OAB makes a counter-clockwise turn,
# negative for clockwise turn, and zero if the points are collinear.
def cross(o, a, b):
return (a[0] - o[0]) * (b[1] - o[1]) - (a[1] - o[1]) * (b[0] - o[0])
# Build upper hull
upper = []
for p in reversed(points):
while len(upper) >= 2 and cross(upper[-2], upper[-1], p) <= 0:
upper.pop()
upper.append(p)
return upper
def plot_data(x,y, fig=None, title=None):
if fig is None:
fig = plt.figure('Data')
fig.clf()
ax = fig.add_subplot(111)
classes = np.unique(y)
for c in classes:
ax.scatter(x[y==c,0], x[y==c,1], c=colors[c], label='Class {}'.format(c))
ax.legend()
def plot_data_and_contourlines(x,y,x_grid,ps, delta=50, fig=None, title=None):
if fig is None:
fig = plt.figure('gaussians')
fig.clf()
plot_data(x,y,fig=fig)
ax = fig.add_subplot(111)
# HEATMAP OF PROBABILITIES
#levels = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
# TODO Change colors of the contour lines to the matching class
if len(ps) == 1:
cmaps= ['jet']
elif len(ps) == 2:
cmaps= ['autumn_r', 'winter_r']
else:
cmaps= ['jet']*len(ps)
for i, p in enumerate(ps):
CS = ax.contour(x_grid[:,0].reshape(delta,delta),
x_grid[:,1].reshape(delta,delta),
p.reshape(delta,-1), linewidths=3,
alpha=1.0, cmap=cmaps[i]) # jet
ax.clabel(CS, fontsize=20, inline=2)
if title is not None:
ax.set_title(title)
def get_grid(x, delta=50):
x_min = np.min(x,axis=0)
x_max = np.max(x,axis=0)
x1_lin = np.linspace(x_min[0], x_max[0], delta)
x2_lin = np.linspace(x_min[1], x_max[1], delta)
MX1, MX2 = np.meshgrid(x1_lin, x2_lin)
x_grid = np.asarray([MX1.flatten(),MX2.flatten()]).T
return x_grid
def plot_roc_curve(y,p,fig=None,title='', pos_label=0):
if fig is None:
fig = plt.figure('roc_curve')
fig.clf()
roc = one_vs_rest_roc_curve(y, p, pos_label=pos_label)
auroc = auc(roc[0], roc[1])
ax = fig.add_subplot(111)
ax.plot(roc[0], roc[1])
ax.plot([0,1],[0,1], 'g--')
upper_hull = convex_hull(zip(roc[0],roc[1]))
rg_hull, pg_hull = zip(*upper_hull)
plt.plot(rg_hull, pg_hull, 'r--')
ax.set_title('{0} {1:.3f}'.format(title, auroc))
ax.set_ylim([0, 1.01])
ax.set_xlim([-0.01, 1.01])
ax.grid(True)
return auroc
def plot_cost_curve(y,p,fig=None,title='', pos_label=0):
if fig is None:
fig = plt.figure('roc_curve')
fig.clf()
class BackgroundClass(object):
def __init__(self, i=1):
self.n_samples, self.mean, self.cov = self.background_description(i)
self.mvn = MyMultivariateNormal(self.mean, self.cov)
def set_experiment(self, i):
self.__init__(i)
def sample(self, n_samples=None):
if n_samples is not None:
return self.mvn.sample(n_samples)
return self.mvn.sample(self.n_samples)
@property
def n_experiments(self):
return len(self.description)
@property
def experiment_ids(self):
return range(self.n_experiments)
def background_description(self, i, samples=500):
self.description = [(0, [0,0], [[1,0], [0,1]]),
(samples, [-1,-1], [[1,0], [0,1]]),
(samples, [0,0], [[1,0], [0,1]]),
(samples, [1,1], [[1,0], [0,1]]),
(samples, [-4,2], [[1,0], [0,1]]),
(samples, [-3,3], [[1,0], [0,1]]),
(samples, [-2,4], [[1,0], [0,1]]),
(samples, [0,6], [[1,0], [0,1]]),
(samples, [-6,0], [[1,0], [0,1]])]
if i >= len(self.description):
raise Exception('Unknown background description id')
return self.description[i]
class MyDataFrame(pd.DataFrame):
def append_rows(self, rows):
dfaux = pd.DataFrame(rows, columns=self.columns)
return self.append(dfaux, ignore_index=True)
def main(pos_labels=[0,1], experiment_ids='all'):
np.random.seed(42)
# Columns for the DataFrame
columns=['Experiment', 'Pos_label', 'Method', 'AUC']
# Create a DataFrame to record all intermediate results
df = MyDataFrame(columns=columns)
# Two original classes
samples = np.array([500, # Class 0
500]) # Class 1
means = np.array([[-1,-1], # Class 1
[1,1]]) # Class 2
covs = np.array([[[1,0], # Class 1
[0,1]],
[[1,0], # Class 2
[0,1]]])
mvn = {}
x = {}
x_samples = []
y_samples = []
for i in range(len(means)):
mvn[i] = MyMultivariateNormal(means[i], covs[i])
x_samples.append(mvn[i].sample(samples[i]))
y_samples.append(np.ones(samples[i])*i)
bg_class = BackgroundClass()
if experiment_ids == 'all':
experiment_ids = bg_class.experiment_ids
for bg_class_id in experiment_ids:
x = x_samples[:]
y = y_samples[:]
# Background
bg_class.set_experiment(bg_class_id)
x.append(bg_class.sample())
y.append(np.ones(bg_class.n_samples)*(len(means)))
x = np.vstack(x)
y = np.hstack(y).astype(int)
x_grid = get_grid(x)
p_grid = []
for key in mvn.keys():
p_grid.append(mvn[key].score(x_grid))
p_grid = np.array(p_grid).T
# Density estimation
fig = plt.figure('Density')
plot_data_and_contourlines(x,y,x_grid,[p_grid[:,0],p_grid[:,1]],fig=fig, title='Density')
# Bayes
prior = samples/sum(samples)
P_x_t = np.sum(p_grid*prior, axis=1)
posterior = (p_grid*prior)/P_x_t[:,None]
fig = plt.figure('Bayes')
plot_data_and_contourlines(x,y,x_grid,[posterior[:,0], posterior[:,1]], fig=fig, title='Bayes optimal')
# Background check
c2 = 1.0
c1 = 0.01
P_t = 1.0 - c1 # np.in1d(y,[0,1]).sum()/len(y)
P_b = c1
# FIXME look if the priors where right
max_value = np.maximum(mvn[0].score([means[0]])*prior[0] + mvn[1].score([means[0]])*prior[0],
mvn[0].score([means[1]])*prior[1] + mvn[1].score([means[1]])*prior[1])
P_x_b = max_value-c2*P_x_t
# Probability of training and class given x
numerator = p_grid*prior*P_t
denominator = np.sum(np.hstack([numerator,
(P_x_b*P_b)[:,None]]), axis=1)
P_t_x = numerator/denominator[:,None]
fig = plt.figure('Background check')
plot_data_and_contourlines(x,y,x_grid,[P_t_x[:,0],P_t_x[:,1]], fig=fig,
title='Background check')
# SVC RBF
x_train = np.vstack(x_samples)
y_train = np.hstack(y_samples).astype(int)
svc = svm.SVC(probability=True, kernel='linear')
svc.fit(x_train,y_train)
svc_pred = svc.predict_proba(x_grid)
fig = plt.figure('svm')
plot_data_and_contourlines(x,y,x_grid,[svc_pred[:,0],svc_pred[:,1]],
fig=fig, title='P_SVC')
svc_rbf = svm.SVC(probability=True, kernel='rbf', gamma='auto')
svc_rbf.fit(x_train,y_train)
svc_rbf_pred = svc_rbf.predict_proba(x_grid)
fig = plt.figure('svm_rbf')
plot_data_and_contourlines(x,y,x_grid,[svc_rbf_pred[:,0],
svc_rbf_pred[:,1]], fig=fig, title='P_SVC_rbf')
svc_poly = svm.SVC(probability=True, kernel='poly', gamma='auto',
degree=3)
svc_poly.fit(x_train,y_train)
svc_poly_pred = svc_poly.predict_proba(x_grid)
fig = plt.figure('svm_poly')
plot_data_and_contourlines(x,y,x_grid,[svc_poly_pred[:,0],
svc_poly_pred[:,1]], fig=fig, title='P_SVC_poly')
# Get the predictions for all the models
predictions = {}
P_x_t_y = []
for key in mvn.keys():
P_x_t_y.append(mvn[key].score(x))
P_x_t_y = np.vstack(P_x_t_y).T
predictions['Density'] = P_x_t_y
P_y_x = P_x_t_y/np.sum(P_x_t_y, axis=1)[:,None]
predictions['Bayes_optimal'] = P_y_x
svc_p_y_x = svc.predict_proba(x)
predictions['SVC_linear'] = svc_p_y_x
svc_rbf_p_y_x = svc_rbf.predict_proba(x)
predictions['SVC_rbf'] = svc_rbf_p_y_x
svc_poly_p_y_x = svc_poly.predict_proba(x)
predictions['SVC_poly'] = svc_poly_p_y_x
# Background check
P_x_t = np.sum(P_x_t_y*prior, axis=1)
P_x_b = max_value-c2*P_x_t
numerator = P_x_t_y*prior*P_t
denominator = np.sum(numerator, axis=1) + P_x_b*P_b
P_t_y_x = numerator/denominator[:,None]
predictions['Background_check'] = P_t_y_x
for pos_label in pos_labels:
for method, prediction in predictions.iteritems():
fig = plt.figure('roc_{}'.format(method))
auroc = plot_roc_curve(y, prediction[:,pos_label], fig=fig,
title='ROC {}'.format(method),
pos_label=pos_label)
df = df.append_rows([[bg_class_id, pos_label, method, auroc]])
roc = one_vs_rest_roc_curve(y, prediction[:,pos_label],
pos_label=pos_label)
## Q = np.zeros(len(roc[0]))
## cs = [1,1]
## c = cs[0]/sum(cs)
## # FIXME look at the priors, they do not include the background
## for i, (fpr, tpr, threshold) in enumerate(zip(roc[0], roc[1], roc[2])):
## Q[i] = 2*(c*prior[0]*(1-tpr) + (1-c)*prior[1]*fpr)
## fig = plt.figure('cost_{}'.format(method))
## fig.clf()
## ax = fig.add_subplot(111)
## ax.plot(roc[2][1:], Q[1:])
## ax.set_xlabel('threshold')
## ax.set_ylabel('$Q_{cost}$')
##fig = plt.figure('cost_lines_{}'.format(method))
##fig.clf()
##ax = fig.add_subplot(111)
### FIXME look at the priors, they do not include the background
##Q_min = np.zeros(len(roc[0]))
##Q_max = np.zeros(len(roc[0]))
##for i, (fpr, tpr, threshold) in enumerate(zip(roc[0], roc[1], roc[2])):
## Q_min[i] = 2*(prior[1]*fpr)
## Q_max[i] = 2*(prior[0]*(1-tpr))
## ax.plot([0, 1], [Q_min[i], Q_max[i]], '--', c='0.75')
##ax.set_xlabel('cost proportion')
##ax.set_ylabel('$Q_{cost}$')
fig = plt.figure('skew_lines_{}'.format(method))
fig.clf()
ax = fig.add_subplot(111)
Q_min = roc[0]
Q_max = 1-roc[1]
ax.plot(np.vstack((np.zeros_like(Q_min), np.ones_like(Q_max))),
np.vstack((Q_min, Q_max)), '--', c='0.80')
ax.set_xlabel('skew')
ax.set_ylabel('$Q_{skew}$')
# FIXME brier score for non-probabilistic outputs
#brier_score = normalized_brier_score(y==pos_label,prediction[:,pos_label])
#ax.set_title('{} BS = {}'.format(method, brier_score))
lines = np.vstack([np.vstack((np.zeros_like(Q_min), Q_min)),
np.vstack((np.ones_like(Q_max), Q_max))]).T
lower_envelope = plot_lower_envelope(lines, ax,
show_segments=False)
aule = auc(lower_envelope[:,0], lower_envelope[:,1])
ax.set_title('{} AULE = {}'.format(method, aule))
fpr = roc[0]
tpr = roc[1]
thresholds = roc[2]
q_skew = thresholds*(1-tpr) + (1-thresholds)*fpr
ax.plot(thresholds, q_skew, 'go-')
df = df.convert_objects(convert_numeric=True)
print df
table = df.pivot_table(values=['AUC'], index=['Experiment'],
columns=['Method', 'Pos_label'])
table.to_csv('table.csv', escape=False)
# TODO consider the priors
table_mean = df.pivot_table(values=['AUC'], index=['Experiment'],
columns=['Method'], aggfunc=[np.mean])
table_mean.to_csv('table_mean.csv', escape=False)
print table_mean
return 0
if __name__ == "__main__":
sys.exit(main(pos_labels=[0], experiment_ids=[4]))