forked from VOR-Quantitative-Biology/scGenAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config_Train_MultiOmicsData_template.yaml
34 lines (27 loc) · 1.39 KB
/
config_Train_MultiOmicsData_template.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# Mode
mode: "Train"
# Directories
cache_dir: "/path_to_your_cache_dir/cache" ## cache dir to save the model template files
model_dir: "/path_to_your_output_model_dir/" ## output model dir
log_dir: "/path_to_your_log_dir/logs/"
#### Input data files ####
train_file: "/path_to_your_trainfile/train.h5ad"
val_file: "/path_to_your_valfile/val.h5ad" ## Optiona
train_ADTfile: "/path_to_your_trained_ADT_file/train_ADT.h5ad"
val_ADTfile: "/path_to_your_val_ADT_file/val_ADT.h5ad" ## Optiona
########################################### General setting ####################################################
savelog: "Yes"
target_feature: "celltype.l2" # Target name for prediction
num_bins: 10 # Bins for gene expression discretization
########## Model template and context method setting #########
model_backbone_name: "llama" ### "llama", "gpt", "bigbird", "scgent"
model_backbone_size: "small" ### "small", "normal", "large". Suggest "small" for llama
max_length: 5120
context_method: "random"
multiomics: "Yes" # Trigger the multiomics method when set to Yes
########################################### Other settings ####################################################
depth: 2 # suggest 2
min_cells: 50 # suggest 50
batch_size: 1 # set this based on GPU memory, higher batch_size higher training speed, but also much more GPU memory will be used
learning_rate: 1e-5 # suggest 1e-5
num_epochs: 30 # suggest 30