-
Notifications
You must be signed in to change notification settings - Fork 5
/
relational_path_gnn.py
130 lines (114 loc) · 4.93 KB
/
relational_path_gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import dgl
import dgl.nn.pytorch as dglnn
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.nn.functional import edge_softmax
class RelationalPathGNN(nn.Module):
def __init__(self, g, ent2id, num_rel, parameter):
super(RelationalPathGNN, self).__init__()
self.ent2id_dict = ent2id
self.device = parameter['device']
self.hop = parameter['hop']
self.es = parameter['embed_dim']
self.g_batch = parameter['g_batch']
self.g = g
self.sampler = dgl.dataloading.MultiLayerFullNeighborSampler(parameter['hop'], prefetch_node_feats=['feat'],
prefetch_edge_feats=['feat', 'eid'])
self.gcn = RPGNN(self.es, self.es * 2, self.es, self.hop,
num_rel)
self.num_rel = num_rel
def ent2id(self, triples):
idx = [[[self.ent2id_dict[t[0]], self.ent2id_dict[t[2]]] for t in batch] for batch in triples]
idx = torch.LongTensor(idx).to(self.device)
return idx # B * few * 2
def forward(self, triples):
'''
inputs:
task: Batch triplets, B * few
outputs:
emb: B * few * es
'''
idx = self.ent2id(triples)
batch_size, few_shot = idx.shape[0], idx.shape[1]
idx = idx.view(-1)
dataloader = dgl.dataloading.DataLoader(
self.g, idx, self.sampler,
batch_size=self.g_batch,
shuffle=False,
drop_last=False,
device=self.device,
use_uva=True)
out_emb = []
for input_nodes, output_nodes, blocks in dataloader:
input_features = blocks[0].srcdata['feat']
out_features = self.gcn(blocks, input_features)
out_emb.append(out_features)
out_emb = torch.cat(out_emb, dim=0)
out_emb = out_emb.view(batch_size, few_shot, 2, -1)
return out_emb
class StochasticTwoLayerGCN(nn.Module):
def __init__(self, in_features, hidden_features, out_features):
super().__init__()
self.conv1 = dglnn.GraphConv(in_features, hidden_features, allow_zero_in_degree=True)
self.conv2 = dglnn.GraphConv(hidden_features, out_features, allow_zero_in_degree=True)
def forward(self, blocks, x):
x = F.relu(self.conv1(blocks[0], x))
x = F.relu(self.conv2(blocks[1], x))
return x
class RPGNN(nn.Module):
def __init__(self, in_features, hidden_features, out_features, hop, n_rel):
super().__init__()
emb_dim = in_features
self.conv_in = RPLayer(emb_dim, in_features, hidden_features, n_rel)
self.conv_out = RPLayer(emb_dim, hidden_features, out_features, n_rel)
self.hop = hop
if hop > 2:
self.conv_hidden = nn.ModuleList(
[RPLayer(emb_dim, hidden_features, hidden_features, n_rel) for _ in range(hop - 2)])
def forward(self, blocks, x):
x = F.relu(self.conv_in(blocks[0], x))
if self.hop > 2:
for i, conv in enumerate(self.conv_hidden):
x = F.relu(conv(blocks[i + 1], x))
x = F.relu(self.conv_out(blocks[-1], x))
return x
class RPLayer(nn.Module):
def __init__(self, emb_dim, in_feat, out_feat, num_rels):
super().__init__()
self.num_rels = num_rels
self.linear_r = dgl.nn.pytorch.TypedLinear(in_feat + emb_dim * 2, out_feat, num_rels)
self.attn_fc = nn.Linear(emb_dim + out_feat, 1, bias=False)
self.h_bias = nn.Parameter(torch.Tensor(out_feat))
self.loop_weight = nn.Parameter(torch.Tensor(emb_dim, out_feat))
nn.init.xavier_uniform_(self.loop_weight, gain=nn.init.calculate_gain('relu'))
def edge_agg(self, edges):
"""Relation Message Passing"""
x = torch.cat([edges.src['h'], edges.data['feat'], edges.dst['feat']], dim=1)
m = self.linear_r(x, edges.data['eid'])
attn = F.leaky_relu(self.attn_fc(torch.cat([edges.dst['feat'], m], dim=1)))
return {'h': m, 'z': attn}
def forward(self, g, feat):
with g.local_scope():
# Norm
degs = g.out_degrees().float().clamp(min=1)
norm = torch.pow(degs, -0.5)
shp = norm.shape + (1,) * (feat.dim() - 1)
norm = torch.reshape(norm, shp)
feat = feat * norm
g.srcdata['h'] = feat
g.apply_edges(self.edge_agg)
e = g.edata.pop('z')
a = edge_softmax(g, e)
g.edata['h'] = a * g.edata['h']
g.update_all(dgl.function.copy_e('h', 'm'), dgl.function.sum('m', 'h'))
h = g.dstdata['h']
h = h + g.dstdata['feat'] @ self.loop_weight
# Norm
degs = g.in_degrees().float().clamp(min=1)
norm = torch.pow(degs, -0.5)
shp = norm.shape + (1,) * (h.dim() - 1)
norm = torch.reshape(norm, shp)
rst = h * norm
h = rst + self.h_bias
return h