-
Notifications
You must be signed in to change notification settings - Fork 164
/
Copy pathrunner.py
537 lines (450 loc) · 21 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import gradio as gr
from gradio.components import Component
from manager import Manager
from typing import Dict, Any
from utils import gen_config, read_yaml_file, flatten_dict, TeeStream
from components.constants import CONPONENTS2ARGKEY, METHOD2PIPELINE
import time
import os
import yaml
from datetime import datetime
import sys
import json
import threading
from queue import Queue
import time
class Runner:
def __init__(self, manager: Manager) -> None:
self.manager = manager
self.pipeline_config = None
self.pipeline = None
self.component2argkey = CONPONENTS2ARGKEY
self.method2pipeline = METHOD2PIPELINE
def _parse_pipeline_args(self, data: Dict["Component", Any]) -> Dict[str, Any]:
get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
basic_setting = dict(
method_name=get("basic.method_name"),
gpu_id=get("basic.gpu_id"),
framework=get("basic.framework"),
generator_model=get("basic.generator_name"),
generator_model_path=get("basic.generator_model_path"),
retrieval_method=get("basic.retrieval_method"),
retrieval_model_path=get("basic.retrieval_model_path"),
corpus_path=get("basic.corpus_path"),
index_path=get("basic.index_path"),
)
retriever_settring = dict(
# Retriever Setting
instruction=get("retrieve.instruction"),
retrieval_topk=int(get("retrieve.retrieval_topk")),
retrieval_batch_size=int(get("retrieve.retrieval_batch_size")),
retrieval_use_fp16=bool(get("retrieve.retrieval_use_fp16")),
retrieval_query_max_length=int(get("retrieve.query_max_length")),
save_retrieval_cache=get("retrieve.save_retrieval_cache"),
use_retrieval_cache=get("retrieve.use_retrieval_cache"),
retrieval_cache_path=get("retrieve.retrieval_cache_path"),
retrieval_pooling_method=get("retrieve.retrieval_pooling_method"),
bm25_backend=get("retrieve.bm25_backend").lower(),
use_sentence_transformer=get("retrieve.use_sentence_transformers"),
)
reranker_setting = dict(
# Reranker Setting
use_reranker=bool(get("rerank.use_rerank")),
rerank_model_name=get("rerank.rerank_model_name"),
rerank_model_path=get("rerank.rerank_model_path"),
rerank_pooling_method=get("rerank.rerank_pooling_method"),
rerank_topk=int(get("rerank.rerank_topk")),
rerank_max_length=int(get("rerank.rerank_max_len")),
rerank_use_fp16=get("rerank.rerank_use_fp16"),
)
generator_setting = dict(
# Generator Setting
generator_max_input_len=int(get("generate.generator_max_input_len")),
generator_batch_size=int(get("generate.generator_batch_size")),
gpu_memory_utilization=float(get("generate.gpu_memory_utilization")),
use_fid=get("generate.generate_use_fid"),
)
openai_setting = dict(
api_key=get("generate.api_key"),
base_url=get("generate.base_url"),
)
generation_params = dict(
do_sample=get("generate.generate_do_sample"),
max_tokens=int(get("generate.generate_max_new_tokens")),
temperature=float(get("generate.generate_temperature")),
top_p=float(get("generate.generate_top_p")),
top_k=int(get("generate.generate_top_k")),
)
llmlingua_setting = dict(
refiner_name="longllmlingua",
refiner_model_path=get("method.llmlingua_refiner_path"),
llmlingua_config=dict(
refiner_input_prompt_flag=get("method.llmlingua_refiner_input_prompt_flag"),
rate=get("method.llmlingua_rate"),
llmlingua_target_token=get("method.llmlingua_target_token"),
condition_in_question=get("method.llmlingua_condition_in_question"),
reorder_context=get("method.llmlingua_reorder_context"),
condition_compare=get("method.llmlingua_condition_compare"),
context_budget=get("method.llmlingua_context_budget"),
rank_method=get("method.llmlingua_rank_method"),
force_tokens=get("method.llmlingua_force_tokens"),
chunk_end_tokens=get("method.llmlingua_chunk_end_tokens"),
),
)
recomp_setting = dict(
refiner_name="recomp",
refiner_model_path=get("method.recomp_refiner_path"),
refiner_max_input_length=get("method.recomp_max_input_length"),
refiner_max_output_length=get("method.recomp_max_output_length"),
refiner_topk=get("method.recomp_topk"),
refiner_pooling_method=get("method.recomp_refiner_pooling_method"),
refiner_encode_max_length=get("method.recomp_encode_max_length"),
)
sc_setting = dict(
refiner_name="selective-context",
refiner_model_path=get("method.sc_refiner_path"),
sc_config={
"reduce_ratio": float(get("method.sc_reduce_ratio")),
"reduce_level": get("method.sc_reduce_level"),
},
)
retrobust_setting = dict(
generator_lora_path=get("method.retrobust_generator_lora_path"),
max_iter=int(get("method.retrobust_max_iter")),
single_hop=bool(get("method.retrobust_single_hop")),
)
skr_setting = dict(
judger_name="skr",
judger_config={
"model_path": get("method.skr_judger_path"),
"training_data_path": get("method.skr_training_data_path"),
"topk": get("method.skr_topk"),
"batch_size": get("method.skr_batch_size"),
"max_length": get("method.skr_max_length"),
},
)
selfrag_setting = dict(
self_rag_setting={
"mode": get("method.selfrag_mode"),
"threshold": get("method.selfrag_threshold"),
"max_depth": get("method.selfrag_max_depth"),
"beam_width": get("method.selfrag_beam_width"),
"w_rel": get("method.selfrag_w_rel"),
"w_sup": get("method.selfrag_w_sup"),
"w_use": get("method.selfrag_w_use"),
"use_grounding": get("method.selfrag_use_grounding"),
"use_utility": get("method.selfrag_use_utility"),
"use_seqscore": get("method.selfrag_use_seqscore"),
"ignore_cont": get("method.selfrag_ignore_cont"),
},
generation_params={
"max_tokens": 100,
"temperature": 0.0,
"top_p": 1.0,
"skip_special_tokens": False,
},
)
flare_setting = dict(
threshold=get("method.flare_threshold"),
look_ahead_steps=get("method.flare_look_ahead_steps"),
max_generation_length=get("method.flare_max_generation_length"),
max_iter_num=get("method.flare_max_iter_num"),
)
iterretgen_setting = dict(iter_num=get("method.iterretgen_iter_num"))
ircot_setting = dict(max_iter=get("method.ircot_max_iter"))
trace_setting = dict(
num_examplars=int(get("method.trace_num_examplars")),
max_chain_length=int(get("method.trace_max_chain_length")),
topk_triple_select=get("method.trace_topk_triple_select"),
num_choices=get("method.trace_num_choices"),
min_triple_prob=get("method.trace_min_triple_prob"),
num_beams=get("method.trace_num_beams"),
num_chains=get("method.trace_num_choices"),
n_context=get("method.trace_n_context"),
context_type=get("method.trace_context_type"),
)
spring_setting = dict(token_embedding_path=get("method.spring_token_embedding_path"))
adaptive_setting = dict(
judger_name="adaptive",
judger_config=dict(model_path=get("method.adaptive_judger_path")),
)
rqrag_setting = dict(max_depth=get("method.rqrag_max_depth"))
args = dict()
args.update(basic_setting)
args.update(retriever_settring)
args.update(reranker_setting)
args.update(generator_setting)
openai_setting = {k: v for k, v in openai_setting.items() if v != ""}
args["openai_setting"] = openai_setting
args["generation_params"] = generation_params
# set default setting
for key in [
"index_path",
"corpus_path",
"retrieval_model_path",
"retrieval_pooling_method",
"instruction",
"retrieval_cache_path",
"rerank_model_name",
"rerank_model_path",
]:
if key in args and args[key] == "":
args[key] = None
method2setting = {
"LongLLMLingua": llmlingua_setting,
"Recomp": recomp_setting,
"Selective-Context": sc_setting,
"Ret-Robust": retrobust_setting,
"Skr": skr_setting,
"Self-RAG": selfrag_setting,
"Flare": flare_setting,
"Iter-Retgen": iterretgen_setting,
"IRCOT": ircot_setting,
"Trace": trace_setting,
"Spring": spring_setting,
"Adaptive-RAG": adaptive_setting,
"RQ-RAG": rqrag_setting,
}
if args["method_name"] in method2setting:
args.update(method2setting[args["method_name"]])
args[args["method_name"]] = method2setting[args["method_name"]]
return args
def _parse_evaluate_args(self, data: Dict["Component", Any]):
get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
args = dict()
# evaluate configs
dataset_name = get("evaluate.dataset_name")
data_dir = get("evaluate.data_dir")
evaluate_setting = dict(
dataset_name=dataset_name,
data_dir=data_dir,
dataset_split=get("evaluate.dataset_split"),
save_intermediate_data=get("evaluate.save_intermediate_data"),
save_dir=get("evaluate.save_dir"),
save_note=get("evaluate.save_note"),
seed=get("evaluate.seed"),
test_sample_num=get("evaluate.test_sample_num"),
random_sample=get("evaluate.random_sample"),
metrics=get("evaluate.use_metrics"),
save_metric_score=get("evaluate.save_metric_score"),
)
args.update(evaluate_setting)
return args
def _preivew_pipeline(self, data: Dict["Component", Any]):
print("Previewing...")
output_box = self.manager.get_elem_by_id("{}.output_box".format("preview"))
args = self._parse_pipeline_args(data)
yield {output_box: gen_config(args)}
def preview_pipeline_configs(self, data):
yield from self._preivew_pipeline(data)
def _preivew_eval(self, data: Dict["Component", Any]):
print("Previewing...")
output_box = self.manager.get_elem_by_id("{}.evaluate_output_box".format("evaluate"))
args = self._parse_evaluate_args(data)
yield {output_box: gen_config(args)}
def preview_eval_configs(self, data):
yield from self._preivew_eval(data)
def get_data_subfolders(self, folder_path: str):
"""Used in evaluate module to update the dataset_name dropdown."""
if os.path.exists(folder_path) and os.path.isdir(folder_path):
subfolders = [f.name for f in os.scandir(folder_path) if f.is_dir()]
if subfolders:
return gr.update(choices=subfolders, value=subfolders[0])
else:
return gr.update(choices=[], value=None)
else:
return gr.update(choices=[], value=None)
def get_dataset_split(self, data_dir: str, dataset_name: str):
"""Get the dataset split"""
if not (os.path.exists(data_dir) and os.path.isdir(data_dir)):
return gr.update(choices=[], value=None)
if dataset_name is None:
return gr.update(choices=[], value=None)
dataset_dir = os.path.join(data_dir, dataset_name)
if not (os.path.exists(dataset_dir) and os.path.isdir(dataset_dir)):
return gr.update(choices=[], value=None)
subfiles = [f.name for f in os.scandir(dataset_dir) if f.is_file()]
valid_splits = ["train", "dev", "test"]
final_splits = [split for split in valid_splits if any(f.startswith(split) for f in subfiles)]
if final_splits:
return gr.update(choices=final_splits, value=final_splits[0])
return gr.update(choices=[], value=None)
def get_config_files(self):
"""Used in basic module to get the saved config files."""
current_path = os.getcwd()
target_folder = "webui_configs"
folder_path = os.path.join(current_path, target_folder)
if os.path.exists(folder_path) and os.path.isdir(folder_path):
file_list = os.listdir(folder_path)
sorted_file_list = sorted(
file_list,
key=lambda x: datetime.strptime(
x.split("_")[1] + "_" + x.split("_")[2].split(".")[0],
"%Y-%m-%d_%H-%M-%S",
),
reverse=True,
)
return sorted_file_list
else:
return []
def save_configs(self, data):
"""Used in preview modulde to save the configs and write them to a file."""
args = self._parse_pipeline_args(data)
args.update(self._parse_evaluate_args(data))
save_dir = os.path.join(os.getcwd(), "webui_configs")
if not os.path.exists(save_dir):
os.makedirs(save_dir)
current_time = datetime.now()
date_str = current_time.strftime("%Y-%m-%d")
time_str = current_time.strftime("%H-%M-%S")
config_file_path = os.path.join(save_dir, f"config_{date_str}_{time_str}.yaml")
with open(config_file_path, "w") as f:
yaml.dump(args, f, default_flow_style=False, indent=4, sort_keys=False)
save_message = f"Successfully saved configs to {config_file_path}"
output_box = self.manager.get_elem_by_id("{}.output_box".format("preview"))
yield {output_box: save_message}
def update_config_file_list(self):
"""Used in preview module to update the config_file dropdown."""
files = self.get_config_files()
return gr.update(choices=files, value=files[0])
def load_config_from_file(self, config_file_name: str):
current_path = os.getcwd()
file_path = os.path.join(current_path, "webui_configs", config_file_name)
data = read_yaml_file(file_path)
data = flatten_dict(data)
new_config = {
elem: elem.__class__(**{"value": data.get(self.component2argkey[elem_name], elem.value)})
for elem_name, elem in self.manager.get_elem_iter()
if elem_name in self.component2argkey
}
return new_config
def _load_generator(self, config):
from flashrag.utils import get_generator
if config["method_name"].lower() != "replug":
return get_generator(config)
else:
from flashrag.pipeline.replug_utils import load_replug_model
model = load_replug_model(config["generator_model_path"])
return get_generator(config, model=model)
def _load_retriever(self, config):
from flashrag.utils import get_retriever
if config["method_name"] != "Vanila Generation":
return get_retriever(config)
else:
return None
def _load_pipeline_instance(self, config, generator, retriever):
import importlib
pipeline_name = self.method2pipeline[config["method_name"]]
pipeline_cls = getattr(importlib.import_module("chat_pipelines"), pipeline_name)
if config["method_name"] != "Vanila Generation":
return pipeline_cls(config=config, generator=generator, retriever=retriever)
else:
from flashrag.prompt import PromptTemplate
prompt_template = PromptTemplate(
config=config,
system_prompt="Answer the question based on your own knowledge. Only give me the answer and do not output any other words.",
user_prompt="Question: {question}",
)
return pipeline_cls(
config=config,
prompt_template=prompt_template,
generator=generator,
retriever=retriever,
)
def _prepare_pipeline(self, config, progress=gr.Progress()):
import torch
if self.pipeline is None:
self.pipeline_config = config
progress(0.25, desc="Loading generator...")
self.generator = self._load_generator(config)
progress(0.5, desc="Loading retriever...")
self.retriever = self._load_retriever(config)
progress(0.75, desc="Loading pipeline...")
self.pipeline = self._load_pipeline_instance(config, self.generator, self.retriever)
progress(1, desc="Finished loading...")
else:
if config["generator_model_path"] != self.pipeline_config["generator_model_path"]:
progress(0.25, desc="Reloading generator...")
del self.generator
torch.cuda.empty_cache()
self.generator = self._load_generator(config)
else:
self.generator.config = config
retriever_keys = ["retriever_model_path", "index_path", "corpus_path"]
if any([config[key] != self.pipeline_config[key] for key in retriever_keys]) or (
self.pipeline_config["method_name"] == "Vanila Generation"
and self.pipeline_config["method_name"] != config["method_name"]
):
progress(0.5, desc="Reloading retriever...")
del self.retriever
torch.cuda.empty_cache()
self.retriever = self._load_retriever(config)
else:
if self.retriever is not None:
self.retriever.config = config
else:
print("Retriever is None!")
progress(0.75, desc="Reloading pipeline...")
if config["method_name"] != self.pipeline_config["method_name"]:
del self.pipeline
torch.cuda.empty_cache()
self.pipeline = self._load_pipeline_instance(config, self.generator, self.retriever)
self.pipeline_config = config
else:
self.pipeline.config = config
self.pipeline_config = config
progress(1, desc="Finished reloading...")
def load_pipeline(self, data: Dict["Component", Any], progress=gr.Progress()):
from flashrag.config import Config
progress(0, desc="Loading config...")
# Load config
args = self._parse_pipeline_args(data)
args["disable_save"] = True
config = Config(config_dict=args)
# Load pipeline
self._prepare_pipeline(config, progress)
return self.manager.get_elem_by_id("chat.chatbot")
def run_evaluate(self, data: Dict["Component", Any], progress=gr.Progress()):
from flashrag.config import Config
from flashrag.utils import get_dataset
from flashrag.evaluator import Evaluator
DONE_MARKER = "__DONE__"
def run_task(queue):
original_stdout = sys.stdout
original_stderr = sys.stderr
sys.stdout = TeeStream(queue, original_stdout)
sys.stderr = TeeStream(queue, original_stderr)
# Load config
args = self._parse_pipeline_args(data)
args.update(self._parse_evaluate_args(data))
args["split"] = [args["dataset_split"]]
args["disable_save"] = True
config = Config(config_dict=args)
print("Finish loading config...")
print("# Args")
print(json.dumps(args, indent=4, ensure_ascii=False))
# Load data
dataset = get_dataset(config)[args["dataset_split"]]
print("Dataset info:")
print(dataset)
# Load pipeline
self._prepare_pipeline(config, progress)
self.pipeline.evaluator = Evaluator(config)
# Run evaluation process
result = self.pipeline.run(dataset)
sys.stdout = original_stdout
sys.stderr = original_stderr
queue.put(DONE_MARKER)
message_queue = Queue()
output_history = "```bash"
threading.Thread(target=run_task, args=(message_queue,), daemon=True).start()
while True:
while not message_queue.empty():
message = message_queue.get()
if message == DONE_MARKER:
yield output_history + "```"
return
# 累积消息到历史记录
output_history += message + "\n"
yield output_history + "```"
time.sleep(0.1)