-
Notifications
You must be signed in to change notification settings - Fork 826
/
do_math.py
685 lines (602 loc) · 25.6 KB
/
do_math.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
import re
import json
import logging
import random
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from tqdm import tqdm
import datasets
import evaluate
import nltk # Here to have a nice missing dependency error message early on
import numpy as np
from datasets import load_dataset, DatasetDict, Dataset
from datasets import Dataset
from filelock import FileLock
from chatglm.modeling_chatglm import ChatGLMForConditionalGeneration
from chatglm.tokenization_chatglm import ChatGLMTokenizer
from chatglm.configuration_chatglm import ChatGLMConfig
import torch
import transformers
from transformers import (
AutoConfig,
LlamaConfig,
AutoModelForSeq2SeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
LlamaTokenizer,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
set_seed,
AutoModelForCausalLM,
)
from transformers.trainer_utils import IntervalStrategy
from transformers.trainer_callback import TrainerCallback
from transformers.utils import check_min_version, is_offline_mode, send_example_telemetry
from transformers.utils.versions import require_version
from prompt_pattern import PROMPT, STOP_WORD
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
resize_position_embeddings: Optional[bool] = field(
default=None,
metadata={
"help": (
"Whether to automatically resize the position embeddings if `max_source_length` exceeds "
"the model's position embeddings."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
lang: Optional[str] = field(default=None, metadata={"help": "Language id for summarization."})
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_path: Optional[str] = field(
default=None, metadata={"help": "The path of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
text_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
)
summary_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={
"help": (
"An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
)
},
)
test_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_source_length: Optional[int] = field(
default=1024,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
max_target_length: Optional[int] = field(
default=128,
metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
val_max_target_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
num_beams: Optional[int] = field(
default=None,
metadata={
"help": (
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
"which is used during ``evaluate`` and ``predict``."
)
},
)
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
},
)
source_prefix: Optional[str] = field(
default="", metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
)
source_suffix: Optional[str] = field(
default="", metadata={"help": "A suffix to add after every source text (useful for T5 models)."}
)
forced_bos_token: Optional[str] = field(
default=None,
metadata={
"help": (
"The token to force as the first generated token after the decoder_start_token_id."
"Useful for multilingual models like mBART where the first generated token"
"needs to be the target language token (Usually it is the target language token)"
)
},
)
max_source_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
},
)
result_path: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
)
@dataclass
class DataCollatorForMWP:
def __init__(self, tokenizer, max_source_length, model_type='other'):
self.pad_token_id = tokenizer.pad_token_id
self.max_source_length = max_source_length
self.model_type = model_type
def __call__(self, examples):
batch = {}
batch['input_ids'] = []
for e in examples:
if (len(e['input_ids']) > self.max_source_length):
e['input_ids'] = e['input_ids'][-self.max_source_length:]
input_ids = torch.cat((
torch.tensor([self.pad_token_id] * (self.max_source_length - len(e['input_ids'])), dtype=torch.int64),
torch.tensor(e['input_ids'], dtype=torch.int64),
), dim=0)
input_ids = input_ids.unsqueeze(0)
batch['input_ids'].append(input_ids)
batch['input_ids'] = torch.cat(batch['input_ids'], dim=0)
batch['attention_mask'] = torch.where(batch['input_ids'] == self.pad_token_id, 0, 1)
if (self.model_type == 'chatglm'):
batch['attention_mask'] = torch.tensor(batch['attention_mask'], dtype=torch.uint8)
batch['labels'] = []
for e in examples:
labels = torch.cat((
torch.tensor([self.pad_token_id] * (self.max_source_length - len(e['input_ids'])), dtype=torch.int64),
torch.tensor(e['input_ids'], dtype=torch.int64),
), dim=0)
labels = labels.unsqueeze(0)
batch['labels'].append(labels)
batch['labels'] = torch.cat(batch['labels'], dim=0)
return batch
class EvalEpochIntervalCallback(TrainerCallback):
def on_epoch_end(self, args, state, control, **kwargs):
epoch = round(state.epoch)
if (epoch % 5 == 0):
control.should_save = True
else:
control.should_save = False
if (args.logging_strategy == IntervalStrategy.EPOCH):
control.should_log = True
control.should_evaluate = True
return control
def clean(content):
pattern = '<<.+>>'
result = re.findall(pattern, content)
for t in result:
content = content.replace(t, '')
content = content.replace('\n', '. ')
return content
def get_answer_boxed(content):
pattern = '\\boxed'
start_pos = content.rfind(pattern)
if (start_pos == -1): return content
answer = ''
num_left = 0
for i in range(start_pos + 7, len(content)):
if (content[i] == '}' and num_left == 0):
break
if (content[i] == '{'):
num_left = num_left + 1
elif (content[i] == '}'):
num_left = num_left - 1
answer = answer + content[i]
return answer
def main():
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
if ('llama' in model_args.model_name_or_path.lower()):
pattern = PROMPT['VANILLA']
stop = STOP_WORD['VANILLA']
# elif ('alpaca' in model_args.model_name_or_path.lower()):
# pattern = PROMPT['ALPACA'].format('Solve math word problem.', '{}', '{}')
# stop = STOP_WORD['ALPACA']
else:
pattern = PROMPT['VANILLA']
stop = STOP_WORD['VANILLA']
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
random.seed(training_args.seed)
train_dataset = DatasetDict.from_json(os.path.join(data_args.dataset_path, 'train.json'))
test_dataset = DatasetDict.from_json(os.path.join(data_args.dataset_path, 'test.json'))
# test_dataset = Dataset.from_dict(test_dataset[:4])
logger.info('--------------- Raw Dataset ---------------')
logger.info(train_dataset)
logger.info(test_dataset)
ids = random.sample([i for i in range(len(train_dataset))], 3)
demo = ''
for idx in ids:
data = train_dataset[idx]
problem = data['problem']
solution = data['solution']
answer = get_answer_boxed(solution)
demo = demo + pattern.format(problem, f'{solution} The answer is {answer}')
# if ('vicuna' in model_args.model_name_or_path.lower()):
# demo = 'You are an helpful expert in mathematical problem. ' + 'USER' + ': ' + demo
# elif ('pythia' in model_args.model_name_or_path.lower()):
# demo = 'You are an helpful expert in mathematical problem.' + ' <|prompter|> ' + demo
logger.info(f'\n{demo}')
# Load pretrained model and tokenizer
if ('chatglm' in model_args.model_name_or_path):
config = ChatGLMConfig.from_pretrained(model_args.model_name_or_path)
tokenizer = ChatGLMTokenizer.from_pretrained(model_args.model_name_or_path)
elif ('llama' not in model_args.model_name_or_path):
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
trust_remote_code=True
)
else:
config = LlamaConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
tokenizer = LlamaTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
logger.info(config)
my_max_input_length = 0
def process(data):
nonlocal my_max_input_length
prompt = demo + pattern.format(data['problem'], '')
# if ('vicuna' in model_args.model_name_or_path.lower()):
# prompt = prompt + ' ASSISTANT:'
# elif ('pythia' in model_args.model_name_or_path.lower()):
# prompt = prompt + ' <|endoftext|> ' + ' <|assistant|> '
inputs = tokenizer(prompt)
labels = tokenizer(data['solution'])
data['input_ids'] = inputs['input_ids']
my_max_input_length = max(my_max_input_length, len(data['input_ids']))
print(my_max_input_length)
# data['attention_mask'] = inputs['attention_mask']
data['labels'] = labels['input_ids']
return data
logger.info('Max Input Length: {}'.format(my_max_input_length))
test_dataset = test_dataset.map(process)
logger.info('--------------- Processed Dataset ---------------')
logger.info(test_dataset)
if (
'gpt' in model_args.model_name_or_path or
'llama' in model_args.model_name_or_path or
'alpaca' in model_args.model_name_or_path or
'vicuna' in model_args.model_name_or_path or
'pythia' in model_args.model_name_or_path
):
tokenizer.pad_token = tokenizer.bos_token
tokenizer.pad_token_id = tokenizer.bos_token_id
config.pad_token_id = config.bos_token_id
if ('falcon' in model_args.model_name_or_path):
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
config.pad_token_id = config.eos_token_id
if ('galactica' in model_args.model_name_or_path):
tokenizer.pad_token_id = config.pad_token_id
tokenizer.eos_token_id = config.eos_token_id
tokenizer.bos_token_id = config.bos_token_id
if (
'bloom' in model_args.model_name_or_path or
'gpt' in model_args.model_name_or_path or
'llama' in model_args.model_name_or_path or
'alpaca' in model_args.model_name_or_path or
'vicuna' in model_args.model_name_or_path or
'pythia' in model_args.model_name_or_path or
'falcon' in model_args.model_name_or_path or
'galactica' in model_args.model_name_or_path
):
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
trust_remote_code=True
)
else:
model = ChatGLMForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
)
if ('chatglm' in model_args.model_name_or_path):
model = model.half()
logger.info(model)
def process(data):
prompt = demo + pattern.format(data['problem'], '')
# if ('vicuna' in model_args.model_name_or_path.lower()):
# prompt = prompt + ' ASSISTANT:'
# elif ('pythia' in model_args.model_name_or_path.lower()):
# prompt = prompt + ' <|endoftext|> ' + ' <|assistant|> '
inputs = tokenizer(prompt)
labels = tokenizer(data['solution'])
data['input_ids'] = inputs['input_ids']
# data['attention_mask'] = inputs['attention_mask']
data['labels'] = labels['input_ids']
return data
train_dataset = train_dataset.map(process)
test_dataset = test_dataset.map(process)
logger.info('--------------- Processed Dataset ---------------')
logger.info(train_dataset)
logger.info(test_dataset)
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
if (
hasattr(model.config, "max_position_embeddings")
and model.config.max_position_embeddings < data_args.max_source_length
):
if model_args.resize_position_embeddings is None:
logger.warning(
"Increasing the model's number of position embedding vectors from"
f" {model.config.max_position_embeddings} to {data_args.max_source_length}."
)
model.resize_position_embeddings(data_args.max_source_length)
elif model_args.resize_position_embeddings:
model.resize_position_embeddings(data_args.max_source_length)
else:
raise ValueError(
f"`--max_source_length` is set to {data_args.max_source_length}, but the model only has"
f" {model.config.max_position_embeddings} position encodings. Consider either reducing"
f" `--max_source_length` to {model.config.max_position_embeddings} or to automatically resize the"
" model's position encodings by passing `--resize_position_embeddings`."
)
# Data collator
if ('chatglm' in model_args.model_name_or_path):
data_collator = DataCollatorForMWP(tokenizer, data_args.max_source_length, 'chatglm')
else:
data_collator = DataCollatorForMWP(tokenizer, data_args.max_source_length)
best_em = 0.0
result_path = None
def compute_metrics(eval_preds):
nonlocal best_em, result_path
preds, labels = eval_preds
print(len(tokenizer), model.get_input_embeddings().weight.shape[0])
print(type(preds))
preds = preds.tolist()
for i in range(len(preds)):
preds[i] = preds[i][data_args.max_source_length:]
for j in range(len(preds[i])):
assert (preds[i][j] < len(tokenizer))
assert (preds[i][j] >= 0 or preds[i][j] == -100)
if (preds[i][j] == -100):
preds[i][j] = tokenizer.pad_token_id
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
decoded_labels = []
for data in test_dataset:
decoded_labels.append(data['solution'])
fout = open(result_path, 'w')
num_correct = 0
total_problem = 0
for pred, label, data in zip(decoded_preds, decoded_labels, test_dataset):
tmp_data = {
'question': data['problem'],
'solution': data['solution'],
}
if (stop in pred):
pred = pred.split(stop)[0].strip()
tmp_data['prediction'] = pred
if ('The answer is' in pred):
pred_ans = pred.split('The answer is')[-1].strip()
if (len(pred_ans) == 0):
pred_ans = ' '
if (pred_ans[-1] == '.'):
pred_ans = pred_ans[:-1]
else: pred_ans = get_answer_boxed(pred)
label_ans = get_answer_boxed(label)
tmp_data['pred_ans'] = pred_ans
tmp_data['real_ans'] = label_ans
tmp_data['score'] = False
if (pred_ans == label_ans):
num_correct = num_correct + 1
tmp_data['score'] = True
total_problem = total_problem + 1
fout.write(json.dumps(tmp_data, indent=4) + '\n')
fout.close()
result = round(num_correct / total_problem * 100, 2)
best_em = max(best_em, result)
logger.info(f'Best Exactly Match: {best_em}')
return {'EM': result}
# Initialize our Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
eval_dataset=test_dataset,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
callbacks=[]
)
# Predict
all_test = test_dataset
for i in range(10):
st = i * 500
en = (i + 1) * 500
test_dataset = Dataset.from_dict(all_test[st: en])
result_path = os.path.join(data_args.result_path, f'{st}_{en}.json')
logger.info(test_dataset)
logger.info(f'Range: [{st}, {en})')
logger.info(f'Result file: {result_path}')
predict_results = trainer.predict(test_dataset, metric_key_prefix="predict")
logger.info(predict_results)
if __name__ == "__main__":
main()