-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ddp.py
453 lines (385 loc) · 19.1 KB
/
train_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm
from torch.amp import autocast, GradScaler
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
import numpy as np
import random
import time
import os
import sys
import argparse
import json
from models.VGG import VGG
from models.ResNet import ResNet
from models.ViT import T2T_ViT
from dataloader.dataset import TinyImageNetDataset, RawData
from config import *
from utils import *
torch.backends.cudnn.deterministic = True
def DataLoaderSplit(raw_data, batch_size, val_ratio=0.2, force_reload=False, workers=1, distributed=False, rank=0, world_size=1):
"""
Prepare DataLoaders for training, validation, and testing.
If distributed=True, use DistributedSampler for training and validation sets.
"""
normalize = transforms.Normalize(mean=[0.4802, 0.4481, 0.3975],
std=[0.2302, 0.2265, 0.2262])
if rank == 0:
print("Loading training data")
train_transform = transforms.Compose([
transforms.ToPILImage(),
transforms.RandomResizedCrop(64),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
test_transform = transforms.Compose([
transforms.ToTensor(),
normalize
])
# test dataset
test_dataset = TinyImageNetDataset(type_='val', raw_data=raw_data, transform=test_transform, force_reload=force_reload)
if rank == 0:
print("Validation dataset created, size: ", len(test_dataset))
# full training dataset
full_train_dataset = TinyImageNetDataset(type_='train', raw_data=raw_data, transform=train_transform, force_reload=force_reload)
if rank == 0:
print("Full training dataset created, size: ", len(full_train_dataset))
# split train/val
full_train_size = len(full_train_dataset)
val_size = int(full_train_size * val_ratio)
train_size = full_train_size - val_size
train_dataset, val_dataset = random_split(full_train_dataset, [train_size, val_size])
# 使用DistributedSampler
if distributed:
train_sampler = DistributedSampler(train_dataset, num_replicas=world_size, rank=rank, shuffle=True, drop_last=True)
val_sampler = DistributedSampler(val_dataset, num_replicas=world_size, rank=rank, shuffle=False, drop_last=False)
test_sampler = DistributedSampler(test_dataset, num_replicas=world_size, rank=rank, shuffle=False, drop_last=False)
else:
train_sampler = None
val_sampler = None
test_sampler = None
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=(train_sampler is None), pin_memory=True, num_workers=workers, sampler=train_sampler)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, pin_memory=True, num_workers=workers, sampler=val_sampler)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, pin_memory=True, num_workers=workers, sampler=test_sampler)
if rank == 0:
print("DataLoaders created.")
return train_loader, val_loader, test_loader
def train(model, iterator, optimizer, criterion, device='cpu', scaler=None, rank=0):
epoch_loss = 0
epoch_acc = 0
model.train()
if rank == 0:
pbar = tqdm(enumerate(iterator), total=len(iterator), desc='Training', leave=False)
for i, (x,label) in enumerate(iterator):
x = x.to(device)
y = label.to(device)
optimizer.zero_grad()
if scaler is not None:
with autocast('cuda'):
y_pred, h = model(x)
loss = criterion(y_pred, y)
acc = calculate_accuracy(y_pred, y)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
y_pred, h = model(x)
loss = criterion(y_pred, y)
acc = calculate_accuracy(y_pred, y)
loss.backward()
optimizer.step()
# loss.backward()
# optimizer.step()
if rank == 0:
pbar.set_postfix(loss=loss.item(), acc=acc.item())
pbar.update(1)
epoch_loss += loss.item()
epoch_acc += acc.item()
if rank == 0:
pbar.close()
# 在分布式环境下,需要对loss和acc进行reduce求平均
avg_loss = torch.tensor(epoch_loss / len(iterator), device=device)
avg_acc = torch.tensor(epoch_acc / len(iterator), device=device)
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
dist.all_reduce(avg_acc, op=dist.ReduceOp.SUM)
avg_loss = avg_loss / dist.get_world_size()
avg_acc = avg_acc / dist.get_world_size()
return avg_loss.item(), avg_acc.item()
def evaluate(model, iterator, criterion, device='cpu', rank=0):
epoch_loss = 0
epoch_acc = 0
model.eval()
if rank == 0:
pbar = tqdm(enumerate(iterator), total=len(iterator), desc='Evaluation', leave=False)
with torch.no_grad():
for i, (x, label) in enumerate(iterator):
x = x.to(device)
y = label.to(device)
with autocast('cuda'):
y_pred, h = model(x)
loss = criterion(y_pred, y)
acc = calculate_accuracy(y_pred, y)
if rank == 0:
pbar.set_postfix(loss=loss.item(), acc=acc.item())
pbar.update(1)
epoch_loss += loss.item()
epoch_acc += acc.item()
if rank == 0:
pbar.close()
# 分布式求平均
avg_loss = torch.tensor(epoch_loss / len(iterator), device=device)
avg_acc = torch.tensor(epoch_acc / len(iterator), device=device)
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
dist.all_reduce(avg_acc, op=dist.ReduceOp.SUM)
avg_loss = avg_loss / dist.get_world_size()
avg_acc = avg_acc / dist.get_world_size()
return avg_loss.item(), avg_acc.item()
def train_model(model, num_epochs, train_loader, val_loader, optimizer, criterion, half=False,scheduler=None, device='cpu', rank=0):
log_history = {'train_loss': [], 'val_loss': [], 'train_acc': [], 'val_acc': [], 'lr': []}
best_acc = 0
best_parms = model.state_dict()
scaler = GradScaler('cuda') if half else None
if rank == 0:
pbar = tqdm(total=num_epochs)
else:
pbar = None
for epoch in range(num_epochs):
# 在分布式训练中,每个epoch需要对sampler进行一次set_epoch,以便随机种子同步
if hasattr(train_loader.sampler, 'set_epoch'):
train_loader.sampler.set_epoch(epoch)
if hasattr(val_loader.sampler, 'set_epoch'):
val_loader.sampler.set_epoch(epoch)
train_loss, train_acc = train(model, train_loader, optimizer, criterion,scaler=scaler, device=device, rank=rank)
if scheduler is not None:
scheduler.step()
valid_loss, valid_acc = evaluate(model, val_loader, criterion, device, rank)
if rank == 0:
pbar.set_postfix(train_loss=train_loss, valid_loss=valid_loss, train_acc=train_acc, valid_acc=valid_acc)
log_history['train_loss'].append(train_loss)
log_history['val_loss'].append(valid_loss)
log_history['train_acc'].append(train_acc)
log_history['val_acc'].append(valid_acc)
log_history['lr'].append(optimizer.param_groups[0]['lr'])
if valid_acc > best_acc and epoch > 0.1 * num_epochs:
best_acc = valid_acc
best_parms = model.state_dict()
pbar.update(1)
if pbar is not None:
pbar.close()
return log_history, best_parms
def get_args_parser():
parser = argparse.ArgumentParser(description="PyTorch Classification Training on Tiny ImageNet", add_help=True)
parser.add_argument('-d',"--data-path", type=str, default="./data/tiny-imagenet-200", help="Path to the Tiny ImageNet data")
parser.add_argument('-o',"--save-dir", default="./out", type=str, help="path to save outputs (default: ./out)")
parser.add_argument("--force-reload", action="store_true", help="Force reload of data")
parser.add_argument('-m',"--model", type=str, default="resnet18", help="Model to use for training")
parser.add_argument('-b',"--batch-size", type=int, default=32, help="Batch size for training")
parser.add_argument('-n',"--num-epochs", type=int, default=100, help="Number of epochs to train")
parser.add_argument(
"-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers (default: 16)"
)
parser.add_argument('-opt',"--optimizer", default="sgd", type=str, help="optimizer", choices=["sgd", "adam", "adamw"])
parser.add_argument('-lr',"--learning-rate", default=0.1, type=float, help="initial learning rate")
parser.add_argument(
"-wd",
"--weight-decay",
default=1e-4,
type=float,
metavar="W",
help="weight decay (default: 1e-4)",
dest="weight_decay",
)
parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
parser.add_argument("--lr-scheduler", default="step", type=str, help="the lr scheduler (default: step)", choices=["step", "cosine", "exponential"])
parser.add_argument("--lr-warmup-epochs", default=0, type=int, help="the number of epochs to warmup (default: 0)")
parser.add_argument("--lr-warmup-method", default="constant", type=str, help="the warmup method (default: constant)", choices=["constant", "linear"])
parser.add_argument("--lr-warmup-decay", default=0.01, type=float, help="the decay for lr")
parser.add_argument("--lr-step-size", default=30, type=int, help="decrease lr every step-size epochs")
parser.add_argument("--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma")
parser.add_argument("--lr-min", default=0.0, type=float, help="minimum lr of lr schedule (default: 0.0)")
parser.add_argument("--smoothing", default=0.0, type=float, help="label smoothing (default: 0.0)")
parser.add_argument("--wo-norm", action="store_false", help="without normalization in the model")
parser.add_argument("--wo-skip", action="store_false", help="without skip connection in the model")
parser.add_argument("--writer", action="store_true", help="Enable Tensorboard logging")
parser.add_argument('--half', action='store_true', help='use half precision')
parser.add_argument('--val', default=0.2, type=float, help='validation ratio')
parser.add_argument('--checkpoint', default=None, type=str, help='path to checkpoint')
parser.add_argument("--dropout", default=0.0, type=float, help="dropout rate (default: 0.0)")
parser.add_argument("--seed", default=42, type=int, help="seed for training")
return parser
def main(args):
# 初始化分布式训练环境
dist.init_process_group(backend="nccl")
local_rank = int(os.environ["LOCAL_RANK"])
rank = dist.get_rank()
world_size = dist.get_world_size()
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
data_path = args.data_path
batch_size = args.batch_size
num_epochs = args.num_epochs
save_dir = args.save_dir
workers = args.workers
force_reload = args.force_reload
if rank == 0:
print("Running distributed training on {} GPUs.".format(world_size))
print("Cuda available device counts = ", torch.cuda.device_count())
for i in range(torch.cuda.device_count()):
print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
# Load raw data
raw_data = RawData(data_path)
num_classes = len(raw_data.labels_t())
if rank == 0:
print(f"Number of classes: {num_classes}")
# Create DataLoader objects
train_loader, val_loader, test_loader = DataLoaderSplit(raw_data, batch_size, val_ratio=args.val, force_reload=force_reload, workers=workers, distributed=True, rank=rank, world_size=world_size)
# Set up the loss function
criterion = nn.CrossEntropyLoss(label_smoothing=args.smoothing)
# Create the model
if args.model == "vgg11":
model = VGG(vgg11_config, num_classes, use_norm=args.wo_norm)
elif args.model == "vgg13":
model = VGG(vgg13_config, num_classes, use_norm=args.wo_norm)
elif args.model == "vgg16":
model = VGG(vgg16_config, num_classes, use_norm=args.wo_norm)
elif args.model == "vgg19":
model = VGG(vgg19_config, num_classes, use_norm=args.wo_norm)
elif args.model == "resnet18":
model = ResNet(resnet18_config, num_classes, use_skip=args.wo_skip)
elif args.model == "resnet34":
model = ResNet(resnet34_config, num_classes, use_skip=args.wo_skip)
elif args.model == "resnet50":
model = ResNet(resnet50_config, num_classes, use_skip=args.wo_skip)
elif args.model == "resnext50":
model = ResNet(resnext50_32x4d_config, num_classes)
elif args.model == "resnet101":
model = ResNet(resnet101_config, num_classes, use_skip=args.wo_skip)
elif args.model == "resnext101":
model = ResNet(resnext101_32x4d_config, num_classes)
elif args.model == "t2t_vit_t_12":
model = T2T_ViT(t2t_vit_t_12_config, num_classes,drop_rate=args.dropout)
elif args.model == "t2t_vit_14":
model = T2T_ViT(t2t_vit_14_config, num_classes,drop_rate=args.dropout)
elif args.model == "t2t_vit_t_14":
model = T2T_ViT(t2t_vit_t_14_config, num_classes,drop_rate=args.dropout)
else:
raise ValueError(f"Model {args.model} not recognized.")
if args.checkpoint is not None:
state_dict = torch.load(args.checkpoint, map_location=device, weights_only=True)
if 'module.' in next(iter(state_dict)):
state_dict = {k[7:]: v for k, v in state_dict.items()} # 去掉module.前缀
model.load_state_dict(state_dict)
if rank == 0:
print(f"Model loaded from {args.checkpoint}")
model = model.to(device)
# 使用DDP包装模型
model = DDP(model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=False)
# Load checkpoint
if rank == 0:
print(f"Model: {args.model}")
print(f"Number of parameters: {sum(p.numel() for p in model.parameters())}")
# Set up the optimizer
if args.optimizer == "sgd":
optimizer = optim.SGD(model.parameters(), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
elif args.optimizer == "adam":
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
elif args.optimizer == "adamw":
optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
else:
raise ValueError(f"Optimizer {args.optimizer} not recognized.")
# Set up the learning rate scheduler
if args.lr_scheduler == "step":
main_lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)
elif args.lr_scheduler == 'cosine':
main_lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs-args.lr_warmup_epochs, eta_min=args.lr_min)
elif args.lr_scheduler == 'exponential':
main_lr_scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=args.lr_gamma)
else:
main_lr_scheduler = None
if rank == 0:
print(f"Optimizer: {args.optimizer}")
# Set up the learning rate warmup
if args.lr_warmup_epochs > 0:
if args.lr_warmup_method == "linear":
warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR(
optimizer, start_factor=args.lr_warmup_decay, total_iters=args.lr_warmup_epochs
)
elif args.lr_warmup_method == "constant":
warmup_lr_scheduler = torch.optim.lr_scheduler.ConstantLR(
optimizer, factor=args.lr_warmup_decay, total_iters=args.lr_warmup_epochs
)
else:
raise RuntimeError(
f"Invalid warmup lr method '{args.lr_warmup_method}'. Only linear and constant are supported."
)
lr_scheduler = torch.optim.lr_scheduler.SequentialLR(
optimizer, schedulers=[warmup_lr_scheduler, main_lr_scheduler], milestones=[args.lr_warmup_epochs]
)
else:
lr_scheduler = main_lr_scheduler
if rank == 0:
print(f"Learning rate scheduler: {args.lr_scheduler}")
if args.checkpoint is not None:
test_loss, test_acc = evaluate(model, test_loader, criterion, device, rank=rank)
if rank == 0:
print(f"At checkpoint, test Loss: {test_loss:.4f}, test Acc: {test_acc:.4f}")
# Train the model
log_history,best_parms = train_model(model, num_epochs, train_loader, val_loader, optimizer, criterion, half=args.half, scheduler=lr_scheduler, device=device, rank=rank)
if rank == 0:
print("Training complete.")
dist.barrier()
model.load_state_dict(best_parms)
test_loss, test_acc = evaluate(model, test_loader, criterion, device, rank=rank)
if rank == 0:
print(f"Test Loss: {test_loss:.4f}, Test Acc: {test_acc:.4f}")
# Evaluate the model on the test set
timestamp = time.strftime("%Y_%m_%d_%H_%M", time.localtime())
save_dir = os.path.join(save_dir, args.model)
os.makedirs(save_dir, exist_ok=True)
torch_save_path = os.path.join(save_dir, f"{timestamp}_ddp_model.pth")
torch.save(best_parms, torch_save_path)
print(f"Model saved as {torch_save_path}")
# Save the log history
log_history['test_loss'] = test_loss
log_history['test_acc'] = test_acc
log_history['args'] = vars(args)
if args.writer:
writer_log_dir = os.path.join("./logs", f"{args.model}_{timestamp}")
writer = SummaryWriter(log_dir=writer_log_dir)
for epoch, (t_loss, v_loss, t_acc, v_acc, lr_) in enumerate(zip(
log_history['train_loss'],
log_history['val_loss'],
log_history['train_acc'],
log_history['val_acc'],
log_history['lr']
)):
writer.add_scalar('Loss/train', t_loss, epoch)
writer.add_scalar('Loss/val', v_loss, epoch)
writer.add_scalar('Accuracy/train', t_acc, epoch)
writer.add_scalar('Accuracy/val', v_acc, epoch)
writer.add_scalar('LearningRate', lr_, epoch)
# Record test loss and accuracy
writer.add_scalar('Test/Loss', log_history['test_loss'], args.num_epochs)
writer.add_scalar('Test/Accuracy', log_history['test_acc'], args.num_epochs)
# Close the writer
writer.close()
json_log_path = os.path.join(save_dir, f"{timestamp}_log.json")
with open(json_log_path, 'w') as f:
json.dump(log_history, f)
print(f"Log history saved as {json_log_path}")
dist.barrier()
dist.destroy_process_group()
if __name__ == "__main__":
args = get_args_parser().parse_args()
SEED = args.seed
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
main(args)