-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
551 lines (471 loc) · 21.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import os
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
import torchmetrics
import pytorch_lightning as pl
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint, EarlyStopping
from transformers import AutoTokenizer
from transformers import get_scheduler
from transformers.optimization import (
get_linear_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_min_lr_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_constant_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup
)
from models.utils import *
from models.model import CustomRNNClassifier, RNNClassifier, TransformerClassifier
from dataloader.data import YelpDataset
from tqdm import tqdm
import gensim
from gensim.scripts.glove2word2vec import glove2word2vec
torch.cuda.empty_cache()
class TextClassifierLightning(pl.LightningModule):
def __init__(self, train_config, model_config, args = None, pretrained_embedding = None):
super(TextClassifierLightning, self).__init__()
self.save_hyperparameters(ignore=['pretrained_embedding'])
if train_config.model == 'custom_rnn' or \
train_config.model == 'custom_gru' or \
train_config.model == 'custom_lstm':
self.model = CustomRNNClassifier(model_config, pretrained_embedding)
elif train_config.model == 'rnn' or \
train_config.model == 'lstm' or \
train_config.model == 'gru':
self.model = RNNClassifier(model_config, pretrained_embedding)
elif train_config.model == 'rcnn':
self.model = RNNClassifier(model_config, pretrained_embedding)
elif train_config.model == 'attention':
self.model = RNNClassifier(model_config, pretrained_embedding)
elif train_config.model == 'transformer':
self.model = TransformerClassifier(model_config, pretrained_embedding)
else:
raise ValueError(f"Unsupported model: {train_config.model}")
self.train_config = train_config
# Metrics
self.train_acc = torchmetrics.Accuracy(task="multiclass", num_classes=model_config.output_dim)
self.val_acc = torchmetrics.Accuracy(task="multiclass", num_classes=model_config.output_dim)
self.test_acc = torchmetrics.Accuracy(task="multiclass", num_classes=model_config.output_dim)
# Loss function
self.criterion = nn.CrossEntropyLoss(label_smoothing=train_config.smooth)
self.time = time.time()
def forward(self, input_ids, attention_mask=None):
return self.model(input_ids, attention_mask)
def training_step(self, batch, batch_idx):
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
labels = batch['label']
# Forward pass
outputs = self(input_ids, attention_mask) # outputs: logits
loss = self.criterion(outputs, labels)
# Update accuracy metric
self.train_acc(outputs, labels) # No need to process the outputs
# Log metrics for each step
# if batch_idx % 50 == 0:
self.log('train/loss', loss, on_step=True, on_epoch=False, prog_bar=True, sync_dist=True)
self.log('train/acc', self.train_acc, on_step=True, on_epoch=False, prog_bar=True, sync_dist=True)
return loss
def validation_step(self, batch, batch_idx):
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
labels = batch['label']
# Forward pass
outputs = self(input_ids, attention_mask) # outputs: logits
loss = self.criterion(outputs, labels)
# Update accuracy metric
self.val_acc(outputs, labels)
# Log metrics for each step
self.log('val/loss', loss, on_step=False, on_epoch=True, sync_dist=True)
self.log('val/acc', self.val_acc, on_step=False, on_epoch=True, sync_dist=True)
def on_train_start(self):
self.print("Start training...")
self.time = time.time()
self.logger.log_hyperparams(self.hparams, { "hp/test_loss": 0, "hp/test_acc": 0})
def on_test_start(self):
self.print("Start testing...")
def test_step(self, batch, batch_idx):
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
labels = batch['label']
# Forward pass
outputs = self(input_ids, attention_mask) # outputs: logits
loss = self.criterion(outputs, labels)
# Update accuracy metric
self.test_acc(outputs, labels)
# self.log('test/loss', loss, on_step=False, on_epoch=True, sync_dist=True)
# self.log('test/acc', self.test_acc, on_step=False, on_epoch=True, sync_dist=True)
self.log('hp/test_loss', loss, on_step=False, on_epoch=True, sync_dist=True)
self.log('hp/test_acc', self.test_acc, on_step=False, on_epoch=True, sync_dist=True)
def configure_optimizers(self):
lr_main = self.train_config.learning_rate # 主体学习率
lr_embed = self.train_config.learning_rate_embed
embedding_params = list(self.model.embedding.parameters())
other_params = [p for n, p in self.model.named_parameters() if 'embedding' not in n]
if lr_embed > 0:
param_groups = [
{'params': embedding_params, 'lr': lr_embed},
{'params': other_params, 'lr': lr_main}
]
elif lr_embed == 0:
param_groups = [
{'params': self.model.parameters(), 'lr': lr_main}
]
for p in embedding_params:
p.requires_grad = False
elif lr_embed < 0:
param_groups = [
{'params': self.model.parameters(), 'lr': lr_main}
]
if self.train_config.optimizer.lower() == 'adam':
optimizer = optim.Adam(param_groups,
lr=lr_main,
weight_decay=self.train_config.weight_decay)
elif self.train_config.optimizer.lower() == 'sgd':
optimizer = optim.SGD(param_groups,
lr=self.train_config.learning_rate,
weight_decay=self.train_config.weight_decay)
else:
raise ValueError(f"Unsupported optimizer: {self.train_config.optimizer}")
# Set up the scheduler
scheduler = None
total_steps = self.train_config.total_steps
warmup_steps = min(self.train_config.warmup_ratio * total_steps, self.train_config.min_warmup)
scheduler_name = self.train_config.scheduler.lower()
assert scheduler_name in ['linear', \
'cosine', \
'cosine_with_restarts', \
'constant', \
'polynomial',\
'none'], \
f"Unsupported scheduler: {self.train_config.scheduler}"
if scheduler_name not in ['none', 'cosine','cosine_with_restarts']:
scheduler = get_scheduler(
name=scheduler_name.scheduler,
optimizer=optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=total_steps
)
elif scheduler_name in ['cosine', 'cosine_with_restarts']:
scheduler_specific_kwargs = {
'num_cycles': self.train_config.num_cycles
}
if scheduler_name == 'cosine':
scheduler_specific_kwargs['min_lr'] = self.train_config.min_lr
scheduler_name = 'cosine_with_min_lr'
scheduler = get_scheduler(
name=scheduler_name,
optimizer=optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=total_steps,
scheduler_specific_kwargs= scheduler_specific_kwargs
)
else:
scheduler = None
if scheduler:
scheduler_config = {
'scheduler': scheduler,
'interval': 'step', # or 'epoch'
'frequency': 1
}
return [optimizer], [scheduler_config]
else:
return optimizer
def test(train_config, model_config, train_loader, valid_loader, test_loader):
# TEST
if train_config.model == 'custom_rnn' or \
train_config.model == 'custom_gru' or \
train_config.model == 'custom_lstm':
model = CustomRNNClassifier(model_config)
elif train_config.model == 'rnn' or \
train_config.model == 'lstm' or \
train_config.model == 'gru':
model = RNNClassifier(model_config)
elif train_config.model == 'rcnn':
model = RNNClassifier(model_config)
elif train_config.model == 'attention':
model = RNNClassifier(model_config)
elif train_config.model == 'transformer':
model = TransformerClassifier(model_config)
else:
raise ValueError(f"Unsupported model: {train_config.model}")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Model Size:", sum(p.numel() for p in model.parameters() if p.requires_grad)//1e6, "M Parameters")
model.to(device)
optimizer = optim.Adam(model.parameters(), lr=train_config.learning_rate, weight_decay=train_config.weight_decay)
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=100,
num_training_steps=train_config.total_steps
)
criterion = nn.CrossEntropyLoss()
with tqdm(total=train_config.total_steps, desc="Training") as pbar:
model.train()
for epoch in range(train_config.epochs):
for batch in train_loader:
pbar.update(1)
optimizer.zero_grad()
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['label'].to(device)
outputs = model(input_ids, attention_mask)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
scheduler.step()
pbar.set_postfix({'loss': loss.item()})
print("Training finished.")
def accuracy(outputs, labels):
_, preds = torch.max(outputs, dim=1)
return torch.sum(preds == labels).item() / len(labels)
valid_acc = 0
valid_loss = 0
with torch.no_grad():
with tqdm(total=len(valid_loader), desc="Validation") as pbar:
model.eval()
for batch in valid_loader:
pbar.update(1)
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['label'].to(device)
outputs = model(input_ids, attention_mask)
loss = criterion(outputs, labels)
valid_loss += loss.item()
valid_acc += accuracy(outputs, labels)
valid_loss /= len(valid_loader)
valid_acc /= len(valid_loader)
print(f"Validation Loss: {valid_loss:.4f}, Validation Accuracy: {valid_acc:.4f}")
print("Validation finished.")
test_acc = 0
test_loss = 0
with torch.no_grad():
with tqdm(total=len(test_loader), desc="Testing") as pbar:
model.eval()
for batch in test_loader:
pbar.update(1)
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['label'].to(device)
outputs = model(input_ids, attention_mask)
loss = criterion(outputs, labels)
test_loss += loss.item()
test_acc += accuracy(outputs, labels)
test_loss /= len(test_loader)
test_acc /= len(test_loader)
print(f"Test Loss: {test_loss:.4f}, Test Accuracy: {test_acc:.4f}")
print("Testing finished.")
def main():
# Parse command-line arguments
args = parse_args()
pl.seed_everything(args.seed)
# Create TrainConfig from parsed arguments
train_config = TrainConfig(
data_path=args.data_path,
model=args.model,
output_path=args.output_path,
checkpoint_path=args.checkpoint,
epochs=args.epochs,
learning_rate=args.learning_rate,
learning_rate_embed=args.learning_rate_embed,
batch_size=args.batch_size,
optimizer=args.optimizer,
scheduler=args.scheduler,
num_cycles=args.num_cycles,
min_lr=args.min_lr,
warmup_ratio=args.warmup_ratio,
min_warmup=args.min_warmup,
weight_decay=args.weight_decay,
smooth=args.smooth,
pretrained=args.pretrained
)
# Initialize tokenizer
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
pretrained_embedding = None
if args.pretrained:
word2vec_output_file = os.path.join(train_config.data_path, 'glove.6B.300d.word2vec.txt')
pretrained_embedding_path = os.path.join(train_config.data_path, 'pretrained_embedding.pt')
if not os.path.exists(pretrained_embedding_path):
if not os.path.exists(word2vec_output_file):
glove_file = os.path.join(train_config.data_path, 'glove.6B.300d.txt')
if not os.path.exists(glove_file):
print("Downloading GloVe embeddings...")
os.system(f"wget http://nlp.stanford.edu/data/glove.6B.zip -P {train_config.data_path}")
os.system(f"unzip {train_config.data_path}/glove.6B.zip -d {train_config.data_path}")
glove2word2vec(glove_file, word2vec_output_file)
print("Loading pretrained word embeddings...")
word_vectors = gensim.models.KeyedVectors.load_word2vec_format(word2vec_output_file, binary=False)
embedding_dim = word_vectors.vector_size
pretrained_embedding = torch.randn(tokenizer.vocab_size, embedding_dim)
for i, token in tokenizer.get_vocab().items():
if word in ['[PAD]', '[CLS]', '[SEP]', '[UNK]', '[MASK]']:
pretrained_embedding[i] = torch.zeros(embedding_dim)
continue
if word.startswith('##'):
pretrained_embedding[i] = torch.randn(embedding_dim)
elif word in word_vectors:
pretrained_embedding[i] = torch.tensor(word_vectors[word])
else:
pretrained_embedding[i] = torch.randn(embedding_dim)
torch.save(pretrained_embedding, pretrained_embedding_path)
print(f"Pretrained word embeddings saved to {pretrained_embedding_path}")
else:
pretrained_embedding = torch.load(pretrained_embedding_path,weights_only=False)
print(f"Pretrained word embeddings loaded from {pretrained_embedding_path}")
# Define ModelConfig, including vocab_size from tokenizer
if train_config.model == 'rnn' or \
train_config.model == 'custom_rnn':
model_config = rnn_config
model_config.pack = args.pack
model_config.bidirectional = args.bidirectional
elif train_config.model == 'gru' or \
train_config.model == 'custom_gru':
model_config = gru_config
model_config.pack = args.pack
model_config.bidirectional = args.bidirectional
elif train_config.model == 'lstm' or \
train_config.model == 'custom_lstm':
model_config = lstm_config
model_config.pack = args.pack
model_config.bidirectional = args.bidirectional
elif train_config.model == 'rcnn':
model_config = rcnn_config
elif train_config.model == 'rnn_attention':
model_config = rnn_attention_config
elif train_config.model == 'transformer':
model_config = transformer_config
model_config.n_heads = args.n_heads
else:
raise ValueError(f"Unsupported model: {train_config.model}")
model_config.output_dim = LABEL_NUM
model_config.vocab_size = tokenizer.vocab_size
model_config.n_layers = args.n_layers
model_config.pool = args.pool
model_config.embedding_dim = args.embedding_dim
model_config.hidden_dim = args.hidden_dim
model_config.dropout = args.dropout
# Initialize datasets
train_dataset = YelpDataset(
data_dir=train_config.data_path,
tokenizer=tokenizer,
train=True,
max_length=args.max_length,
reload_=args.reload
)
print(f"Number of training samples: {len(train_dataset)}")
test_dataset = YelpDataset(
data_dir=train_config.data_path,
tokenizer=tokenizer,
train=False,
max_length=args.max_length,
reload_=args.reload
)
print(f"Number of test samples: {len(test_dataset)}")
# Split training data into train and validation sets
split_ratio = args.val_ratio
valid_size = int(split_ratio * len(train_dataset))
# valid_size = min(int(split_ratio * len(train_dataset)), len(test_dataset)*2)
train_size = len(train_dataset) - valid_size
train_subset, valid_subset = torch.utils.data.random_split(train_dataset, [train_size, valid_size])
# Create DataLoaders
train_loader = DataLoader(
train_subset,
batch_size=train_config.batch_size,
shuffle=True,
num_workers=4,
persistent_workers=True,
pin_memory=True,
)
valid_loader = DataLoader(
valid_subset,
batch_size=train_config.batch_size,
shuffle=False,
num_workers=4,
persistent_workers=True,
pin_memory=True,
)
test_loader = DataLoader(
test_dataset,
batch_size=train_config.batch_size,
shuffle=False,
num_workers=4,
persistent_workers=True,
)
train_config.total_steps = len(train_loader) * train_config.epochs
# Initialize the Lightning module
if train_config.checkpoint_path:
checkpioint_file = os.path.join(train_config.checkpoint_path, "best-checkpoint.ckpt")
print(f"Loading checkpoint model from {checkpioint_file}")
lightning_model = TextClassifierLightning.load_from_checkpoint(checkpoint_path=checkpioint_file, train_config=train_config, model_config=model_config, args=args, pretrained_embedding=pretrained_embedding)
else:
lightning_model = TextClassifierLightning(train_config=train_config, model_config=model_config, args=args, pretrained_embedding=pretrained_embedding)
# Set up model checkpointing to save the best model based on validation accuracy
timenow = time.strftime("%Y%m%d-%H-%M")
if args.tag:
output_dir = os.path.join(train_config.output_path, f"{train_config.model}-{args.tag}", timenow)
else:
output_dir = os.path.join(train_config.output_path, train_config.model, timenow)
os.makedirs(output_dir, exist_ok=True)
checkpoint_callback = ModelCheckpoint(
dirpath=output_dir,
monitor="val/acc",
mode="max",
save_top_k=1,
verbose=True,
filename="best-checkpoint",
save_last=True,
)
# Set up learning rate monitoring
lr_monitor = LearningRateMonitor(logging_interval='step')
# Set up early stopping to stop training early if the model is not improving
early_stop_callback = EarlyStopping(
monitor="val/acc", # Monitor validation accuracy
patience=args.patience, # Stop after patience epochs of no improvement
mode="max", # 'max' for maximizing validation accuracy
divergence_threshold=0.1,
verbose=True # Print when early stopping happens
)
# early_stop_callback_loss = EarlyStopping(
# monitor="val/loss", # Monitor validation accuracy
# patience=args.patience, # Stop after patience epochs of no improvement
# mode="min", # 'max' for maximizing validation accuracy
# divergence_threshold=0.1,
# verbose=True # Print when early stopping happens
# )
# Initialize PyTorch Lightning Trainer
log_name = f"{train_config.model}-{args.tag}" if args.tag else train_config.model
logger = TensorBoardLogger("logs", name=log_name, version=timenow, default_hp_metric=False)
trainer = pl.Trainer(
logger=logger,
max_epochs=train_config.epochs,
accelerator="gpu",
callbacks=[checkpoint_callback, lr_monitor, early_stop_callback],
val_check_interval=args.val_cki,
log_every_n_steps = args.log_step,
)
# # Train the model
if trainer.is_global_zero:
print("Training Configuration:")
print(train_config)
print("Model Configuration:")
print(model_config)
# ==================Train==================
trainer.fit(lightning_model, train_loader, valid_loader)
best_model_path = checkpoint_callback.best_model_path
if trainer.is_global_zero:
time_cost = time.time() - lightning_model.time
# hyperparams = {"train_config": train_config, "model_config": model_config, "args": args}
# metrics = {"best_val_acc": checkpoint_callback.best_model_score.item()}
# logger.log_hyperparams(hyperparams, metrics=metrics)
print(f"Training finished in {time_cost//60:.0f}m {time_cost%60:.0f}s")
print(f"Best model saved at: {best_model_path}")
print(f"Last model saved at: {checkpoint_callback.last_model_path}")
# Load the best checkpoint for testing
lightning_model = TextClassifierLightning.load_from_checkpoint(checkpoint_path=best_model_path, pretrained_embedding=pretrained_embedding)
# Test the model
trainer.test(lightning_model, dataloaders=test_loader)
if __name__ == "__main__":
main()