-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIMPACT_query.Rd
75 lines (65 loc) · 2.3 KB
/
IMPACT_query.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/IMPACT_query.R
\name{IMPACT_query}
\alias{IMPACT_query}
\title{Query IMPACT annotations}
\usage{
IMPACT_query(
query_dat,
types = c("annot", "ldscore"),
populations = c("EAS", "EUR"),
query_genome = "hg19",
target_genome = "hg19",
overlapping_only = TRUE,
output_format = c("wide", "long", "list"),
add_metadata = FALSE,
conda_env = "echoR_mini",
nThread = 1,
verbose = TRUE
)
}
\arguments{
\item{query_dat}{Variant-level summary statistics.}
\item{types}{File types to include.}
\item{populations}{Population ancestries to include
("EAS" = East Asian; "EUR" = European).}
\item{query_genome}{Genome build that the \code{query_granges} is aligned to.}
\item{target_genome}{Genome build of the VCF file.}
\item{overlapping_only}{Remove variants that do not overlap with the
positions in \code{query_dat}.}
\item{output_format}{Output format options:
\itemize{
\item{"wide" : }{Spread annotation across columns and keep 1 row/SNP.}
\item{"long" : }{Melt annotation across rows and allow multiple rows/SNP.}
\item{"list" : }{Do not perform merging of queries and instead return
results as a named list, where the name is
the file the annotation came from.}
}}
\item{add_metadata}{Add metadata about each sample
(\emph{Warning}: can substantially increase the dataset size).}
\item{conda_env}{Conda environments to search in.
If \code{NULL} (default), will search all conda environments.}
\item{nThread}{Number of threads to use.}
\item{verbose}{Print messages.}
}
\value{
A named list or data.table of annotations
merged with \code{query_dat}.
}
\description{
Query annotations/LD-scores generated by
\href{https://github.com/immunogenomics/IMPACT}{IMPACT}
(Inference and Modeling of Phenotype-related ACtive Transcription),
IMPACT predicts transcription factor (TF) binding at a motif site by
learning the epigenomic profiles at those sites
(primarily \href{https://www.encodeproject.org/}{ENCODE}).
All data are aligned to the \emph{hg19} genome build.
All data has also been
reformatted to tabix indexed files and uploaded to Zenodo
\href{https://doi.org/10.5281/zenodo.7062238}{here}
to allow for rapid querying.
}
\examples{
query_dat <- echodata::BST1[1:50,]
annot_dt <- IMPACT_query(query_dat=query_dat, populations="EUR")
}