forked from LARS-research/PAS-OGB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
530 lines (447 loc) · 19.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
import torch
import torch.nn as nn
# from operations import *
from op_graph_classification import *
from torch.autograd import Variable
from torch_geometric.nn import global_mean_pool, global_add_pool
import torch.nn.functional as F
from ogb.graphproppred.mol_encoder import AtomEncoder, BondEncoder
from torch.nn import BatchNorm1d
from torch_geometric.utils import add_self_loops,remove_self_loops,remove_isolated_nodes, degree
import pyximport
# import algos
def act_map(act):
if act == "linear":
return lambda x: x
elif act == "elu":
return torch.nn.functional.elu
elif act == "sigmoid":
return torch.sigmoid
elif act == "tanh":
return torch.tanh
elif act == "relu":
return torch.nn.functional.relu
elif act == "relu6":
return torch.nn.functional.relu6
elif act == "softplus":
return torch.nn.functional.softplus
elif act == "leaky_relu":
return torch.nn.functional.leaky_relu
elif act == "prelu":
return torch.nn.PReLU
else:
raise Exception("wrong activate function")
class NaOp(nn.Module):
def __init__(self, primitive, in_dim, out_dim, act, with_linear=False, with_act=True):
super(NaOp, self).__init__()
print(primitive)
# self.bond_encoder = BondEncoder(emb_dim=in_dim)
self._op = NA_OPS[primitive](in_dim, out_dim)
if with_linear:
self.op_linear = nn.Linear(in_dim, out_dim)
if not with_act:
act = 'linear'
self.act = act_map(act)
self.with_linear = with_linear
def reset_params(self):
self._op.reset_params()
# self.op_linear.reset_parameters()
def forward(self, x, edge_index, edge_weights, edge_attr):
if self.with_linear:
return self.act(self._op(x, edge_index, edge_weight=edge_weights, edge_attr=edge_attr) + self.op_linear(x))
else:
return self.act(self._op(x, edge_index, edge_weight=edge_weights, edge_attr=edge_attr))
# mixed_res = []
# for w, op in zip(weights, self._ops):
# mixed_res.append(w * F.relu(op(x, edge_index)))
# return sum(mixed_res)
class ScOp(nn.Module):
def __init__(self, primitive):
super(ScOp, self).__init__()
# self._ops = nn.ModuleList()
# for primitive in SC_PRIMITIVES:
# op = SC_OPS[primitive]()
# self._ops.append(op)
self._op = SC_OPS[primitive]()
def forward(self, x):
# mixed_res = []
# for w, op in zip(weights, self._ops):
# mixed_res.append(w * F.relu(op(x)))
# return sum(mixed_res)
return self._op(x)
class LaOp(nn.Module):
def __init__(self, primitive, hidden_size, act, num_layers=None):
super(LaOp, self).__init__()
self._op = LA_OPS[primitive](hidden_size, num_layers)
self.act = act_map(act)
def reset_params(self):
self._op.reset_params()
def forward(self, x):
# return self.act(self._op(x))
return self._op(x)
class NaMLPOp(nn.Module):
def __init__(self, primitive, in_dim, out_dim, act):
super(NaMLPOp, self).__init__()
self._op = NA_MLP_OPS[primitive](in_dim, out_dim)
self.act = act_map(act)
def forward(self, x, edge_index):
return self.act(self._op(x, edge_index))
class PoolingOp(nn.Module):
def __init__(self, primitive, hidden, ratio, num_nodes=0):
super(PoolingOp, self).__init__()
self._op = POOL_OPS[primitive](hidden, ratio, num_nodes)
self.primitive = primitive
def reset_params(self):
self._op.reset_params()
def forward(self, x, edge_index,edge_weights, data, batch, mask):
new_x, new_edge_index, _, new_batch, _ = self._op(x, edge_index, edge_weights, data, batch, mask, ft=True)
return new_x, new_edge_index, new_batch, None
class ReadoutOp(nn.Module):
def __init__(self, primitive, hidden):
super(ReadoutOp, self).__init__()
self._op = READOUT_OPS[primitive](hidden)
def reset_params(self):
self._op.reset_params()
def forward(self, x, batch, mask):
return self._op(x, batch, mask)
class NetworkGNN(nn.Module):
'''
implement this for sane.
Actually, sane can be seen as the combination of three cells, node aggregator, skip connection, and layer aggregator
for sane, we dont need cell, since the DAG is the whole search space, and what we need to do is implement the DAG.
'''
def __init__(self, genotype, criterion, in_dim, out_dim, hidden_size, num_layers=3, in_dropout=0.2, out_dropout=0.5, act='elu', args=None,is_mlp=False, num_nodes=0):
super(NetworkGNN, self).__init__()
hidden_size = hidden_size
self.prelu = nn.PReLU()
self.genotype = genotype
# self.beta = torch.nn.Parameter(torch.Tensor([1.]), requires_grad=True)
self.in_dim = in_dim
self.atom_encoder = AtomEncoder(hidden_size)
# self.bond_encoder = BondEncoder(hidden_size)
self.out_dim = out_dim
self.hidden_size = hidden_size
self.num_layers = num_layers
self.in_dropout = in_dropout
self.out_dropout = out_dropout
self.dropout = in_dropout
self._criterion = criterion
ops = genotype.split('||')
# self.in_degree_encoder = nn.Embedding(64, hidden_size, padding_idx=0)
# self.out_degree_encoder = nn.Embedding(64, hidden_size, padding_idx=0)
### set the initial virtual node embedding to 0.
# self.virtualnode_embedding = torch.nn.Embedding(1, hidden_size)
# torch.nn.init.constant_(self.virtualnode_embedding.weight.data, 0)
### List of MLPs to transform virtual node at every layer
# self.mlp_virtualnode_list = torch.nn.ModuleList()
# for layer in range(num_layers - 1):
# self.mlp_virtualnode_list.append(
# torch.nn.Sequential(torch.nn.Linear(hidden_size, 2 * hidden_size), torch.nn.BatchNorm1d(2 * hidden_size),
# torch.nn.ReLU(), \
# torch.nn.Linear(2 * hidden_size, hidden_size), torch.nn.BatchNorm1d(hidden_size),
# torch.nn.ReLU()))
# self.outdeg_emb = nn.Linear(1, hidden_size)
self.args = args
self.pool = global_mean_pool
self.pooling_ratios = [[0.1],[0.25, 0.25], [0.5, 0.5, 0.5],[0.6, 0.6, 0.6, 0.6],[0.7, 0.7, 0.7, 0.7, 0.7],[0.8, 0.8, 0.8, 0.8, 0.8, 0.8],
[1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7],[1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8],[1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9],
[1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10],[1/11, 1/11, 1/11, 1/11, 1/11, 1/11, 1/11, 1/11, 1/11, 1/11, 1/11],
[1/12, 1/12, 1/12, 1/12, 1/12, 1/12, 1/12, 1/12, 1/12, 1/12, 1/12, 1/12],[1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13],
[1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13]]
self.batch_norms = torch.nn.ModuleList()
for layer in range(self.num_layers + 1):
self.batch_norms.append(torch.nn.BatchNorm1d(hidden_size))
if self.args.data in ['NCI1', 'NCI109']:
self.pooling_ratios = [[0.1], [0.5, 0.5], [0.5, 0.5, 0.5], [0.6, 0.6, 0.6, 0.6], [0.7, 0.7, 0.7, 0.7, 0.7],
[0.8, 0.8, 0.8, 0.8, 0.8, 0.8]]
# if num_layers == 1:
# self.pooling_ratio = [0.1]
# elif num_layers == 2:
# self.pooling_ratio = [0.25, 0.25]
# elif num_layers == 3:
# self.pooling_ratio = [0.5, 0.5, 0.5]
# elif num_layers == 4:
# self.pooling_ratio = [0.6, 0.6, 0.6, 0.6]
# elif num_layers == 5:
# self.pooling_ratio = [0.7, 0.7, 0.7, 0.7, 0.7]
# elif num_layers == 6:
#it shoule be [num_layers-1]
self.pooling_ratio = self.pooling_ratios[num_layers-1]
# print('genotype:', genotype)
#node aggregator op
# self.lin1 = nn.Linear(hidden_size, hidden_size)
if is_mlp:
self.gnn_layers = nn.ModuleList([NaMLPOp(ops[i], hidden_size, hidden_size, act) for i in range(num_layers)])
else:
# acts from train_search or fine_tune
if self.args.search_act:
act = ops[num_layers: num_layers*2]
print(act)
else:
act = [act for i in range(num_layers)]
print(act)
print(args.with_linear)
self.gnn_layers = nn.ModuleList(
[NaOp(ops[i], hidden_size, hidden_size, act, with_linear=args.with_linear, with_act=False) for i in range(num_layers)])
self.act = act
# if self.args.one_pooling:
# poolops = [ops[num_layers*2+i] if i in [1, 3] else 'none' for i in range(num_layers)]
# num_pool_ops = num_layers//2
# # it should be self.pooling_ratios[num_pool_ops-1] but i forget [-1]. it doesn't matter.
# self.pooling_ratio = [self.pooling_ratios[num_pool_ops-1][0] for i in range(num_layers)]
# elif self.args.remove_pooling:
# poolops = ['none' for i in range(num_layers)]
# else:
# poolops = [ops[num_layers*2+i] for i in range(num_layers)]
#
# if self.args.fixpooling != 'null':
# # use a fix pooling
# if self.args.one_pooling:
# poolops = [self.args.fixpooling if i in [1, 3] else 'none' for i in range(num_layers)]
# else:
# poolops = [self.args.fixpooling for i in range(num_layers)]
# self.pooling_layers = nn.ModuleList(
# [PoolingOp(poolops[i], hidden_size, self.pooling_ratio[i]) for i in range(num_layers)])
# nonop = [ops[num_layers*3 + i] != 'none' for i in range(num_layers+1)]
# print('____________________________________nonop:', nonop)
# nonop = sum(nonop)
# if nonop == 0:
# # ops[num_layers*4 + 1] ='global_sum'
# ops[-2] ='global_sum'
# nonop=1
# if self.args.remove_jk:
# ops[-2] = 'global_sum'
# if self.args.remove_readout:
# if ops[-2] == 'none':
# ops[-2] = 'global_sum'
# self.readout_layers = nn.ModuleList(
# [ReadoutOp(ops[num_layers*3 + i], hidden_size) for i in range(num_layers+1)])
#learnable_LN
if self.args.with_layernorm_learnable:
self.lns_learnable = torch.nn.ModuleList()
for i in range(self.num_layers):
self.lns_learnable.append(torch.nn.BatchNorm1d(hidden_size))
#layer aggregator op
# if self.args.fixjk:
# self.layer6 = LaOp('l_concat', hidden_size, 'linear', num_layers+1)
# else:
# self.layer6 = LaOp(ops[-1], hidden_size, 'linear', num_layers+1)
# self.lin_output = nn.Linear(hidden_size, hidden_size)
self.classifier = nn.Linear(hidden_size, out_dim)
# other feature computation
# def convert_to_single_emb(self, x, offset=512):
# feature_num = x.size(1) if len(x.size()) > 1 else 1
# feature_offset = 1 + \
# torch.arange(0, feature_num * offset, offset, dtype=torch.long)
# x = x + feature_offset.to(x.device)
# return x
# def preprocess_item(self, item):
# edge_attr, edge_index, x = item.edge_attr, item.edge_index, item.x
# N = x.size(0)
# # x = self.convert_to_single_emb(x)
#
# # node adj matrix [N, N] bool
# adj = torch.zeros([N, N], dtype=torch.bool)
# adj[edge_index[0, :], edge_index[1, :]] = True
#
# # edge feature here
# # if len(edge_attr.size()) == 1:
# # edge_attr = edge_attr[:, None]
# # attn_edge_type = torch.zeros([N, N, edge_attr.size(-1)], dtype=torch.long)
# # attn_edge_type[edge_index[0, :], edge_index[1, :]
# # ] = self.convert_to_single_emb(edge_attr) + 1
# # print('edge feature done')
#
# # shortest_path_result, path = algos.floyd_warshall(adj.numpy())
# # print('shortest path done')
# # max_dist = np.amax(shortest_path_result)
# # edge_input = algos.gen_edge_input(max_dist, path, attn_edge_type.numpy())
# # spatial_pos = torch.from_numpy((shortest_path_result)).long()
# # print('edge input done')
# # attn_bias = torch.zeros(
# # [N + 1, N + 1], dtype=torch.float) # with graph token
#
# # combine
# item.x = x
# # item.adj = adj
# # item.attn_bias = attn_bias
# # item.attn_edge_type = attn_edge_type
# # item.spatial_pos = spatial_pos
# item.in_degree = adj.long().sum(dim=1).view(-1)
# item.out_degree = adj.long().sum(dim=0).view(-1)
# # item.edge_input = torch.from_numpy(edge_input).long()
#
# return item
def reset_params(self):
# self.lin1.reset_parameters()
for i in range(self.num_layers):
self.gnn_layers[i].reset_params()
# self.pooling_layers[i].reset_params()
# for i in range(self.num_layers+1):
# self.readout_layers[i].reset_params()
# self.layer6.reset_params()
# self.lin_output.reset_parameters()
self.classifier.reset_parameters()
def forward(self, data, perturb=None):
# data = self.preprocess_item(data)
# degree = data.in_degree
x, edge_index, batch, edge_attr = data.x, data.edge_index, data.batch, data.edge_attr
# in_degree, out_degree = data.in_degree.to(x.device), data.out_degree.to(x.device)
### virtual node embeddings for graphs
# virtualnode_embedding = self.virtualnode_embedding(
# torch.zeros(batch[-1].item() + 1).to(edge_index.dtype).to(edge_index.device))
# row, col = edge_index
# deg = degree(row, x.size(0), dtype=x.dtype) + 1
# mgf_maccs_pred = data.y[:, 2]
if self.args.data == 'COLORS-3':
edge_index, _, mask = remove_isolated_nodes(edge_index, None, x.size(0))
x = x[mask]
batch = batch[mask]
if self.args.data == 'ogbg-molhiv' or self.args.data == 'ogbg-molpcba':
#flag
# x = self.atom_encoder(x) + perturb if perturb is not None else self.atom_encoder(x)
x = self.atom_encoder(x)
# x = x + self.in_degree_encoder(deg) + self.out_degree_encoder(deg)
# edge_attr = self.bond_encoder(edge_attr)
# degree
# x = self.deg_BN(deg) + self.atom_BN(x)
# x = F.elu(self.conv1(x, edge_index, edge_attr))
# add self_loop
# edge_index, _ = remove_self_loops(edge_index)
# edge_index, _ = add_self_loops(edge_index, num_nodes=x.size()[0])
# print('init shape', x.size(), batch.size())
#generate weights by softmax
# graph_representations = []
# input linear
# x = F.elu(self.lin1(x.float()))
# tmp_res = self.readout_layers[0](x, batch, None)
# if tmp_res != None:
# graph_representations.append(tmp_res)
#readout change
# graph_representations.append(self.readout_layers[0](x, batch, None))
# graph_representations.append(x)
# x = F.dropout(x, p=self.in_dropout, training=self.training)
# edge_weights = torch.ones(edge_index.size()[1], device=edge_index.device).float()
x = self.gnn_layers[0](x, edge_index, edge_weights=None, edge_attr=edge_attr)
for i in range(1, self.num_layers):
x1 = self.batch_norms[i - 1](x)
if not self.args.search_act:
x2 = F.relu(x1)
else:
if self.act[i] == 'relu':
x2 = self.prelu(x1)
# x2 = F.relu(x1)
elif self.act[i] == 'sigmoid':
x2 = torch.sigmoid(x1)
elif self.act[i] == 'tanh':
x2 = torch.tanh(x1)
elif self.act[i] == 'softplus':
x2 = F.softplus(x1)
elif self.act[i] == 'leaky_relu':
x2 = F.leaky_relu(x1)
elif self.act[i] == 'relu6':
x2 = F.relu6(x1)
elif self.act[i] == 'elu':
x2 = F.elu(x1)
x2 = F.dropout(x2, p=self.dropout, training=self.training)
# graph_representations[i] += virtualnode_embedding[batch]
x = self.gnn_layers[i](x2, edge_index, edge_weights=None, edge_attr=edge_attr) + x
# print('evaluate data {}-th gnn:'.format(i), x.size(), batch.size())
# if self.args.with_layernorm_learnable:
# x = self.lns_learnable[i](x)
# elif self.args.with_layernorm:
# layer_norm = nn.LayerNorm(normalized_shape=x.size(), elementwise_affine=False)
# x = layer_norm(x)
# print()
# x, edge_index, _, _ = self.pooling_layers[i](x, edge_index, edge_weights, data, batch, None)
# x, edge_index, batch, _ = self.pooling_layers[i](x, edge_index, None, data, batch, None)
# print('evaluate data {}-th pooling:'.format(i), x.size(), batch.size())
# residual
# x += graph_representations[i]
# graph_representations.append(self.readout_layers[i+1](x, batch, None))
# graph_representations.append(x)
# if i < self.num_layers - 1:
# ### add message from graph nodes to virtual nodes
# virtualnode_embedding_temp = global_add_pool(graph_representations[i], batch) + virtualnode_embedding
# virtualnode_embedding = virtualnode_embedding + F.dropout(
# self.mlp_virtualnode_list[i](virtualnode_embedding_temp), self.in_dropout,
# training=self.training)
## transform virtual nodes using MLP
# x = self.conv1(x, edge_index, edge_attr)
# x = self.batch_norms[i + 1](x)
# x = F.dropout(x, p=self.in_dropout, training=self.training)
# graph_representations.append(x)
x = self.batch_norms[self.num_layers - 1](x)
x = F.dropout(x, p=self.dropout, training=self.training)
# if self.args.remove_jk or self.args.remove_readout:
# x = graph_representations[-1]
# else:
# x = self.layer6(graph_representations)
# read_out:
# x = self.readout_layers[i + 1](x, batch, None)
# x = self.readout_layers[0](x, batch, None)
x = self.pool(x, batch)
# x = self.last_pool(x, batch)
# out linear
# x = F.elu(self.lin_output(x), inplace=True)
# x = F.dropout(x, p=self.out_dropout, training=self.training)
x = self.classifier(x)
# mol_fingerprint
# h_graph_final = torch.cat((logits, mgf_maccs_pred.reshape(-1, 1)), 1)
# att = torch.nn.functional.softmax(h_graph_final * self.beta, -1)
# return torch.sum(h_graph_final * att, -1).reshape(-1, 1)
return x
# if self.out_dim == 1:
# return x
#
# return F.log_softmax(x, dim=-1)
def _loss(self, logits, target):
return self._criterion(logits, target)
# def _initialize_alphas(self):
#
# num_na_ops = len(NA_PRIMITIVES)
# num_sc_ops = len(SC_PRIMITIVES)
# num_la_ops = len(LA_PRIMITIVES)
#
#
# self.log_na_alphas = Variable(torch.zeros(self.num_layers,num_na_ops).normal_(self._loc_mean, self._loc_std).cuda(), requires_grad=True)
# if self.num_layers>1:
# self.log_sc_alphas = Variable(torch.zeros(self.num_layers - 1, num_sc_ops).normal_(self._loc_mean, self._loc_std).cuda(), requires_grad=True)
# else:
# self.log_sc_alphas = Variable(torch.zeros(1, num_sc_ops).normal_(self._loc_mean, self._loc_std).cuda(), requires_grad=True)
#
# self.log_la_alphas = Variable(torch.zeros(1, num_la_ops).normal_(self._loc_mean, self._loc_std).cuda(), requires_grad=True)
#
# self._arch_parameters = [
# self.log_na_alphas,
# self.log_sc_alphas,
# self.log_la_alphas
# ]
def arch_parameters(self):
return self._arch_parameters
# def genotype(self):
#
# def _parse(na_weights, sc_weights, la_weights):
# gene = []
# na_indices = torch.argmax(na_weights, dim=-1)
# for k in na_indices:
# gene.append(NA_PRIMITIVES[k])
# #sc_indices = sc_weights.argmax(dim=-1)
# sc_indices = torch.argmax(sc_weights, dim=-1)
# for k in sc_indices:
# gene.append(SC_PRIMITIVES[k])
# #la_indices = la_weights.argmax(dim=-1)
# la_indices = torch.argmax(la_weights, dim=-1)
# for k in la_indices:
# gene.append(LA_PRIMITIVES[k])
# return '||'.join(gene)
#gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).data.cpu().numpy())
#gene_reduce = _parse(F.softmax(self.alphas_reduce, dim=-1).data.cpu().numpy())
# gene = _parse(F.softmax(self.log_na_alphas, dim=-1).data.cpu(), F.softmax(self.log_sc_alphas, dim=-1).data.cpu(),
# F.softmax(self.log_la_alphas, dim=-1).data.cpu())
#concat = range(2+self._steps-self._multiplier, self._steps+2)
#genotype = Genotype(
# normal=gene_normal, normal_concat=concat,
# reduce=gene_reduce, reduce_concat=concat
#)
# return gene