-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlda_util.py
102 lines (85 loc) · 3.4 KB
/
lda_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#from article_2_vector_word_count import *
#from collections import defaultdict
import lda
import sqlite3
import numpy as np
#from scipy.sparse import csr_matrix, save_npz
from nltk.corpus import wordnet
from nltk import word_tokenize, pos_tag
from nltk.stem import WordNetLemmatizer
from sklearn.feature_extraction.text import CountVectorizer
from pandas import DataFrame
from NYSE_tradingdays import NYSE_tradingdays
from datetime import datetime
import pandas as pd
import pickle as pk
def date_convert(x):
if x is None:
return(None)
else:
return(datetime.strptime(x, '%Y-%m-%d').date() if len(x)<=10 else datetime.strptime(x, '%Y-%m-%d %H:%M:%S').date())
def get_wordnet_pos(treebank_tag):
if treebank_tag.startswith('J'):
return wordnet.ADJ
elif treebank_tag.startswith('V'):
return wordnet.VERB
elif treebank_tag.startswith('N'):
return wordnet.NOUN
elif treebank_tag.startswith('R'):
return wordnet.ADV
else:
return wordnet.NOUN
def is_float(string):
try:
float(string)
return True
except ValueError:
return False
class LemmaTokenizer(object):
def __init__(self):
self.wnl = WordNetLemmatizer()
def __call__(self, doc):
self.word_pos=pos_tag(word_tokenize(doc))
return [self.wnl.lemmatize(w,get_wordnet_pos(p)) for w,p in self.word_pos
if len(w)>=3 and not w.isdigit() and not is_float(w) ]
# -----------------------------------
# Extracting features from database
# -----------------------------------
def article_extractor(sqlite_file,start_date, end_date):
conn=sqlite3.connect(sqlite_file)
c=conn.cursor()
articles_2016=c.execute("SELECT date, article FROM articles WHERE date BETWEEN ? AND ?", (start_date, end_date))
df=DataFrame(articles_2016.fetchall())
df.columns=('date','article')
conn.close()
return df
def article2matrix(article):
cnt_vectorizer = CountVectorizer(tokenizer=LemmaTokenizer(),stop_words='english')
doc_term_mat = cnt_vectorizer.fit_transform(article)
vocab = cnt_vectorizer.vocabulary_.keys()
return (doc_term_mat, vocab)
def matrix_dump(mat, directory, outfile_prefix, matrix_type):
with open(directory+outfile_prefix+matrix_type+'_120501_120531.txt','wb+') as f:
pk.dump(mat,f)
def vocab_write(vocab, directory, outfile_prefix, vocab_type):
with open(directory+ outfile_prefix + vocab_type+'_120501_120531.txt','w+') as f:
for wd in vocab:
f.write(wd + '\n')
def lda_out(doc_term_mat, vocab, directory, outfile_prefix, num_topics, n_top_words):
model=lda.LDA(n_topics=num_topics,n_iter=1500,random_state=1)
model.fit(doc_term_mat)
topic_word=model.topic_word_
matrix_dump(topic_word, directory, outfile_prefix, 'tpc_wds' )
matrix_dump(model.doc_topic_, directory, outfile_prefix, 'doc_tpc')
with open(directory+outfile_prefix+str(num_topics)+'_120501_120531.txt','w+') as f:
for i, topic_dist in enumerate(topic_word):
topic_words=np.array(sorted(vocab))[np.argsort(topic_dist)][:-(n_top_words+1):-1]
f.write('Topic {0} : {1}\n'.format(i, ', '.join(topic_words).encode("utf-8")))
def matrix_load(file):
with open(file,'rb') as f:
mat = pk.load(f)
return mat
def vocab_load(file):
with open(file, 'r') as f:
voc=f.read()
return voc