-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtest_params.py
80 lines (75 loc) · 2.18 KB
/
test_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Model hyper parameters
decoder_params = {
"hidden_size": 256,
"num_layers": 1,
"peephole": False
}
hrnn_params = {
'use_movie_occurrences': False,
'sentence_encoder_hidden_size': 256,
'conversation_encoder_hidden_size': 256,
'sentence_encoder_num_layers': 1,
'conversation_encoder_num_layers': 1,
'use_dropout': False,
}
hred_params = {
'decoder_params': decoder_params,
"hrnn_params": hrnn_params
}
sentiment_analysis_baseline_params = {
'use_dropout': False,
'hidden_size': 512,
'sentence_encoder_num_layers': 2
}
sentiment_analysis_params = {
'hrnn_params': {
# whether to add a dimension indicating the occurrence of the movie name in the sentence
'use_movie_occurrences': 'word',
'sentence_encoder_hidden_size': 512,
'conversation_encoder_hidden_size': 512,
'sentence_encoder_num_layers': 2,
'conversation_encoder_num_layers': 2,
'use_dropout': 0.4,
}
}
autorec_params = {
'layer_sizes': [1000],
'f': "sigmoid",
'g': "sigmoid",
}
recommend_from_dialogue_params = {
"sentiment_analysis_params": sentiment_analysis_params,
"autorec_params": autorec_params
}
recommender_params = {
'decoder_params': decoder_params,
'hrnn_params': hrnn_params,
'recommend_from_dialogue_params': recommend_from_dialogue_params,
'latent_layer_sizes': None,
'language_aware_recommender': False,
}
# Training parameters
train_sa_params = {
"learning_rate": 0.001,
"batch_size": 16,
"nb_epochs": 50,
"patience": 5,
"weight_decay": 0,
"use_class_weights": True, # whether to use class weights to reduce class imbalance for liked? label
"cut_dialogues": -1, # if >=0, specifies the width of the cut around movie mentions. Otherwise, don't cut dialogues
"targets": "suggested seen liked"
}
train_autorec_params = {
"learning_rate": 0.001,
"batch_size": 64,
"nb_epochs": 50,
"patience": 5,
"batch_input": "random_noise",
"max_num_inputs": 1e10 # max number of inputs (for random_noise batch loading mode)
}
train_recommender_params = {
"learning_rate": 0.001,
"batch_size": 4,
"nb_epochs": 50,
"patience": 5,
}