-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain_sentiment_analysis.py
261 lines (229 loc) · 10.3 KB
/
train_sentiment_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
import shutil
import numpy as np
import torch
import torch.nn as nn
from tqdm import tqdm
import config
from models.sentiment_analysis import SentimentAnalysis, SentimentAnalysisLoss
from models.sentiment_analysis_baseline import SentimentAnalysisBaseline, SentimentAnalysisBaselineLoss
from batch_loaders.batch_loader import DialogueBatchLoader
import test_params
from utils import create_dir
# When changing loss function during training, nb of epochs before changing
change_at_epoch = 3
# function that freezes parts of the model
def freeze(model):
for param in model.encoder.sentence_encoder.parameters():
param.requires_grad = False
for param in model.encoder.conversation_encoder.parameters():
param.requires_grad = False
def train(model, batch_loader, baseline, save_path, nb_epochs, patience,
targets="suggested seen liked", use_class_weights=True,
start_with_class_weights=False, cut_dialogues=-1):
"""
Train the SentimentAnalysis model
:param cut_dialogues:
:param patience:
:param nb_epochs:
:param save_path:
:param baseline:
:param batch_loader:
:param model:
:param start_with_class_weights: if True, use class weights at the beginning, and remove them after change_at_epoch
epochs
:return:
"""
# set word2id in batchloader from encoder
if baseline:
batch_loader.set_word2id(model.gensen.task_word2id)
loss_class = SentimentAnalysisBaselineLoss
else:
batch_loader.set_word2id(model.encoder.word2id)
loss_class = SentimentAnalysisLoss
epoch = 0
patience_count = 0
best_loss = 1e10
n_train_batches = batch_loader.n_batches["train"]
training_losses = []
validation_losses = []
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-4)
# Criterion. Weights for imbalanced classes (95 likes for 5 dislikes approx)
if use_class_weights:
criterion = loss_class(class_weight={"liked": use_class_weights},
use_targets=targets)
else:
criterion = loss_class(class_weight=None, use_targets=targets)
while epoch < nb_epochs:
model.train()
# do not use weights anymore, freeze a part of the model
if start_with_class_weights and epoch >= change_at_epoch:
criterion.liked_criterion = nn.NLLLoss()
freeze(model)
losses = []
for _ in tqdm(range(n_train_batches)):
if cut_dialogues == "epoch":
batch = batch_loader.load_batch(subset="train", cut_dialogues=epoch + 1)
else:
batch = batch_loader.load_batch(subset="train", cut_dialogues=cut_dialogues)
if model.cuda_available:
batch["dialogue"] = batch["dialogue"].cuda()
batch["forms"] = batch["forms"].cuda()
batch["senders"] = batch["senders"].cuda()
if not baseline:
batch["movie_occurrences"] = batch["movie_occurrences"].cuda()
# Train iteration: forward, backward and optimize
optimizer.zero_grad()
outputs = model(batch)
loss = criterion(outputs, batch["forms"])
# optimize
loss.backward()
optimizer.step()
loss = loss.data[0]
# keep losses in memory
losses.append(loss)
print('Epoch : {} Training Loss : {}'.format(epoch, np.mean(losses)))
training_losses.append(np.mean(losses))
# Evaluate
val_loss = model.evaluate(batch_loader=batch_loader, criterion=criterion)
# print('Epoch : {} Validation Loss : {}'.format(epoch, val_loss))
print('--------------------------------------------------------------')
validation_losses.append(val_loss)
epoch += 1
with open(os.path.join(save_path, "logs"), "a+") as f:
text = "EPOCH {} : losses {} {} \n". \
format(epoch, training_losses[-1], val_loss)
f.write(text)
# Keep track of best loss for early stopping (disabled if before the loss change)
if not start_with_class_weights or epoch >= change_at_epoch:
is_best = val_loss < best_loss
best_loss = min(best_loss, val_loss)
else:
# if start with class weights == True and epoch < change_at_epoch, do not update best_loss.
is_best = True
save_checkpoint({
"epoch": epoch,
"state_dict": model.state_dict(),
"params": model.params,
"best_loss": best_loss,
}, is_best, save_path)
# Early stopping
if is_best:
patience_count = 0
else:
patience_count += 1
if patience_count >= patience:
print("Early stopping, {} epochs without best".format(patience_count))
break
print("Training done.")
def evaluate(model, batch_loader, resume, baseline, subset="valid", show_wrong=False):
# set word2id in batchloader from encoder
if baseline:
batch_loader.set_word2id(model.gensen.task_word2id)
else:
batch_loader.set_word2id(model.encoder.word2id)
if not os.path.isfile(resume):
raise ValueError("no checkpoint found at '{}'".format(resume))
print("=> loading checkpoint '{}'".format(resume))
if model.cuda_available:
checkpoint = torch.load(resume)
else:
checkpoint = torch.load(resume, map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {} with loss {})"
.format(resume, checkpoint['epoch'], checkpoint['best_loss']))
model.evaluate(batch_loader, print_matrices=True, subset=subset, show_wrong=show_wrong)
def save_checkpoint(state, is_best, path):
torch.save(state, os.path.join(path, "checkpoint"))
if is_best:
shutil.copy(os.path.join(path, "checkpoint"), os.path.join(path, "model_best"))
def explore_params(params_seq, baseline=False, data="standard"):
"""
:param params_seq: sequence of tuples (save_folder, model_params, train_params)
:return:
"""
if baseline:
model_class = SentimentAnalysisBaseline
sources = "sentiment_analysis movie_occurrences"
else:
model_class = SentimentAnalysis
sources = "sentiment_analysis movie_occurrences"
for (save_path, params, train_params) in params_seq:
create_dir(save_path)
print("Saving in {} with parameters : {}, {}".format(save_path, params, train_params))
if "start_with_class_weights" in train_params and train_params["start_with_class_weights"]:
train_params["use_class_weights"] = True
print("start_with_class_weights is set to True, setting use_class_weights=True")
else:
train_params["start_with_class_weights"] = False
if train_params["use_class_weights"]:
train_params["use_class_weights"] = [1. / 5, 1. / 80, 1. / 15]
if data == "standard":
batch_loader = DialogueBatchLoader(
sources=sources,
batch_size=train_params['batch_size']
)
sa = model_class(params=params, train_vocab=batch_loader.train_vocabulary)
if baseline:
train(
sa,
nb_epochs=train_params["nb_epochs"],
patience=train_params["patience"],
save_path=save_path,
baseline=baseline,
batch_loader=batch_loader,
targets=train_params["targets"],
use_class_weights=train_params['use_class_weights'],
start_with_class_weights=train_params["start_with_class_weights"],
cut_dialogues=0
)
else:
train(
sa,
nb_epochs=train_params["nb_epochs"],
patience=train_params["patience"],
save_path=save_path,
baseline=baseline,
batch_loader=batch_loader,
targets=train_params["targets"],
use_class_weights=train_params['use_class_weights'],
start_with_class_weights=train_params["start_with_class_weights"],
cut_dialogues=train_params['cut_dialogues']
)
elif data == "increasing_data_size":
for size in [1000, 2000, 4000, 6000, -1]:
batch_loader = DialogueBatchLoader(
sources=sources,
batch_size=train_params['batch_size'],
training_size=size
)
sa = model_class(params=params, train_vocab=batch_loader.train_vocabulary)
if baseline:
train(
sa,
nb_epochs=train_params["nb_epochs"],
patience=train_params["patience"],
save_path=save_path + "/{}training".format(size),
baseline=baseline,
batch_loader=batch_loader,
targets=train_params["targets"],
use_class_weights=train_params['use_class_weights'],
start_with_class_weights=train_params["start_with_class_weights"],
cut_dialogues=0
)
else:
train(
sa,
nb_epochs=train_params["nb_epochs"],
patience=train_params["patience"],
save_path=save_path + "/{}training".format(size),
baseline=baseline,
batch_loader=batch_loader,
targets=train_params["targets"],
use_class_weights=train_params['use_class_weights'],
start_with_class_weights=train_params["start_with_class_weights"],
cut_dialogues=train_params['cut_dialogues']
)
if __name__ == '__main__':
params_seq = [(config.SENTIMENT_ANALYSIS_MODEL, test_params.sentiment_analysis_params, test_params.train_sa_params)]
explore_params(params_seq, baseline=False)