-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathFRVSR_models.py
373 lines (319 loc) · 14.3 KB
/
FRVSR_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import unittest
import torch
import torch.nn as nn
import torch.nn.functional as func
import cv2
import numpy as np
from skimage import img_as_ubyte
# an naive implementation of CVPR paper 'Frame-Recurrent Video Super-Resolution' https://arxiv.org/abs/1801.04590
from torchvision.models import vgg16
class ResBlock(nn.Module):
def __init__(self, conv_dim):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels=conv_dim, out_channels=conv_dim,
kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(in_channels=conv_dim, out_channels=conv_dim,
kernel_size=3, stride=1, padding=1)
def forward(self, input):
out = self.conv1(input)
out = func.relu(out)
out = self.conv2(out)
out = input + out
return out
class ConvLeaky(nn.Module):
def __init__(self, in_dim, out_dim):
super(ConvLeaky, self).__init__()
self.conv1 = nn.Conv2d(in_channels=in_dim, out_channels=out_dim,
kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(in_channels=out_dim, out_channels=out_dim,
kernel_size=3, stride=1, padding=1)
def forward(self, input):
out = self.conv1(input)
out = func.leaky_relu(out, 0.2)
out = self.conv2(out)
out = func.leaky_relu(out, 0.2)
return out
class FNetBlock(nn.Module):
def __init__(self, in_dim, out_dim, typ):
super(FNetBlock, self).__init__()
self.convleaky = ConvLeaky(in_dim, out_dim)
if typ == "maxpool":
self.final = lambda x: func.max_pool2d(x, kernel_size=2)
elif typ == "bilinear":
self.final = lambda x: func.interpolate(x, scale_factor=2, mode="bilinear")
else:
raise Exception('typ does not match any of maxpool or bilinear')
def forward(self, input):
out = self.convleaky(input)
out = self.final(out)
return out
class SRNet(nn.Module):
def __init__(self, in_dim=51):
super(SRNet, self).__init__()
self.inputConv = nn.Conv2d(in_channels=in_dim, out_channels=64, kernel_size=3, stride=1, padding=1)
self.ResBlocks = nn.Sequential(*[ResBlock(64) for i in range(10)])
self.deconv1 = nn.ConvTranspose2d(in_channels=64, out_channels=64, kernel_size=3,
stride=2, padding=1, output_padding=1)
self.deconv2 = nn.ConvTranspose2d(in_channels=64, out_channels=64, kernel_size=3,
stride=2, padding=1, output_padding=1)
self.outputConv = nn.Conv2d(in_channels=64, out_channels=3, kernel_size=3, stride=1, padding=1)
# self.dropout = nn.Dropout(p = 0.5)
def forward(self, input):
out = self.inputConv(input)
out = self.ResBlocks(out)
out = self.deconv1(out)
out = func.relu(out)
out = self.deconv2(out)
out = func.relu(out)
out = self.outputConv(out)
#out = self.dropout(out)
return out
class FNet(nn.Module):
def __init__(self, in_dim=6):
super(FNet, self).__init__()
self.convPool1 = FNetBlock(in_dim, 32, typ="maxpool")
self.convPool2 = FNetBlock(32, 64, typ="maxpool")
self.convPool3 = FNetBlock(64, 128, typ="maxpool")
self.convBinl1 = FNetBlock(128, 256, typ="bilinear")
self.convBinl2 = FNetBlock(256, 128, typ="bilinear")
self.convBinl3 = FNetBlock(128, 64, typ="bilinear")
self.seq = nn.Sequential(self.convPool1, self.convPool2, self.convPool3,
self.convBinl1, self.convBinl2, self.convBinl3)
self.conv1 = nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=2, kernel_size=3, stride=1, padding=1)
def forward(self, input):
out = self.seq(input)
out = self.conv1(out)
out = func.leaky_relu(out, 0.2)
out = self.conv2(out)
self.out = torch.tanh(out)
self.out.retain_grad()
return self.out
# please ensure that input is (batch_size, depth, height, width)
# courtesy to Hung Nguyen at https://gist.github.com/jalola/f41278bb27447bed9cd3fb48ec142aec.
class SpaceToDepth(nn.Module):
def __init__(self, block_size):
super(SpaceToDepth, self).__init__()
self.block_size = block_size
self.block_size_sq = block_size * block_size
def forward(self, input):
output = input.permute(0, 2, 3, 1)
(batch_size, s_height, s_width, s_depth) = output.size()
d_depth = s_depth * self.block_size_sq
d_width = int(s_width / self.block_size)
d_height = int(s_height / self.block_size)
t_1 = output.split(self.block_size, 2)
stack = [t_t.reshape(batch_size, d_height, d_depth) for t_t in t_1]
output = torch.stack(stack, 1)
output = output.permute(0, 2, 1, 3)
output = output.permute(0, 3, 1, 2)
return output
# please ensure that lr_height and lr_width must be a multiple of 8.
class FRVSR(nn.Module):
def __init__(self, batch_size, lr_height, lr_width):
super(FRVSR, self).__init__()
FRVSR.SRFactor = 4
self.width = lr_width
self.height = lr_height
self.batch_size = batch_size
self.fnet = FNet()
self.todepth = SpaceToDepth(FRVSR.SRFactor)
self.srnet = SRNet(FRVSR.SRFactor * FRVSR.SRFactor * 3 + 3) # 3 is channel number
# make sure to call this before every batch train.
def init_hidden(self, device):
self.lastLrImg = torch.zeros([self.batch_size, 3, self.height, self.width]).to(device)
self.EstHrImg = torch.zeros([self.batch_size, 3, self.height * FRVSR.SRFactor, self.width * FRVSR.SRFactor]).to(device)
height_gap = 2 / (self.height - 1)
width_gap = 2 / (self.width - 1)
height, width = torch.meshgrid([torch.range(-1, 1, height_gap), torch.range(-1, 1, width_gap)])
self.lr_identity = torch.stack([width, height]).to(device)
height_gap = 2 / (self.height * self.SRFactor - 1)
width_gap = 2 / (self.width * self.SRFactor - 1)
height, width = torch.meshgrid([torch.range(-1, 1, height_gap), torch.range(-1, 1, width_gap)])
self.hr_identity = torch.stack([width, height]).to(device)
# useless debug info
'''
prvs = img_as_ubyte(self.lastLrImg[0].permute(1,2,0).detach().numpy())
next = img_as_ubyte(input[0].permute(1,2,0).detach().numpy())
prvs = cv2.cvtColor(prvs, cv2.COLOR_BGR2GRAY)
next = cv2.cvtColor(next, cv2.COLOR_BGR2GRAY)
flow = cv2.calcOpticalFlowFarneback(prvs, next, None, 0.5, 3, 15, 3, 5, 1.2, 0)
flow[...,0] /= flow.shape[1]
flow[...,1] /= flow.shape[0]
flow_to_use = flow
flow = torch.unsqueeze(torch.tensor(flow).permute(2,0,1), 0)
flow_len = np.expand_dims(np.sqrt((flow_to_use[..., 0] ** 2 + flow_to_use[..., 1] ** 2)), 2)
flow_to_use /= flow_len
print(flow)
self.EstLrImg = func.grid_sample(self.lastLrImg, flow.permute(0, 2, 3, 1))
self.EstLrImg = func.grid_sample(self.lastLrImg, torch.unsqueeze(torch.tensor(flow_to_use), 0))
self.EstLrImg = input
self.EstLrImg = func.grid_sample(self.lastLrImg, torch.unsqueeze(torch.tensor(flow), 0))
'''
# x is a 4-d tensor of shape N×C×H×W
def forward(self, input):
def trunc(tensor):
# tensor = tensor.clone()
tensor[tensor < 0] = 0
tensor[tensor > 1] = 1
return tensor
# print(f'input.shape is {input.shape}, lastImg shape is {self.lastLrImg.shape}')
preflow = torch.cat((input, self.lastLrImg), dim=1)
flow = self.fnet(preflow)
# flow += self.lr_identity
relative_place = flow + self.lr_identity
# debug info goes here
self.EstLrImg = func.grid_sample(self.lastLrImg, relative_place.permute(0, 2, 3, 1))
# self.EstLrImg = trunc(self.EstLrImg)
# print(self.EstLrImg)
relative_placeNCHW = func.interpolate(relative_place, scale_factor=4, mode="bilinear")
# relative_placeNCHW = torch.unsqueeze(self.hr_identity, dim=0)
relative_placeNWHC = relative_placeNCHW.permute(0, 2, 3,
1) # shift c to last, as grid_sample function needs it.
afterWarp = func.grid_sample(self.EstHrImg, relative_placeNWHC)
self.afterWarp = afterWarp # for debugging, should be removed later.
depthImg = self.todepth(afterWarp)
srInput = torch.cat((input, depthImg), dim=1)
estImg = self.srnet(srInput)
self.lastLrImg = input
self.EstHrImg = estImg
#self.EstHrImg = trunc(self.EstHrImg)
self.EstHrImg.retain_grad()
return self.EstHrImg, self.EstLrImg
def set_param(self, **kwargs):
for (key, val) in kwargs.items():
if key == 'batch_size':
self.batch_size = val
if key == 'height':
self.height = val
if key == 'width':
self.width = val
class Loss(nn.Module):
def __init__(self):
super(Loss, self).__init__()
vgg = vgg16(pretrained=True)
loss_network = nn.Sequential(*list(vgg.features)[:31]).eval()
for param in loss_network.parameters():
param.requires_grad = False
self.loss_network = loss_network
self.mse_loss = nn.MSELoss()
self.tv_loss = TVLoss()
def forward(self, out_images, target_images):
# Adversarial Loss
# adversarial_loss = torch.mean(1 - out_labels)
# Perception Loss
perception_loss = self.mse_loss(self.loss_network(out_images), self.loss_network(target_images))
# Image Loss
image_loss = self.mse_loss(out_images, target_images)
# TV Loss
tv_loss = self.tv_loss(out_images)
return image_loss + 0.006 * perception_loss + 2e-8 * tv_loss
class GeneratorLoss(nn.Module):
def __init__(self):
super(GeneratorLoss, self).__init__()
vgg = vgg16(pretrained=True)
loss_network = nn.Sequential(*list(vgg.features)[:31]).eval()
for param in loss_network.parameters():
param.requires_grad = False
self.loss_network = loss_network
self.mse_loss = nn.MSELoss()
self.tv_loss = TVLoss()
def forward(self, out_labels, hr_est, hr_img, lr_est, lr_img, idx):
# Adversarial Loss
adversarial_loss = -torch.mean(out_labels)
# Perception Loss
perception_loss = self.mse_loss(self.loss_network(hr_est), self.loss_network(hr_img))
# Image Loss
image_loss = self.mse_loss(hr_est, hr_img)
# TV Loss
tv_loss = self.tv_loss(hr_est)
# flow loss
if idx != 0:
flow_loss = self.mse_loss(lr_est, lr_img)
else:
flow_loss = 0
return image_loss + 0.001 * adversarial_loss + 0.006 * perception_loss + 2e-8 * tv_loss + 0.0001 * flow_loss
class TVLoss(nn.Module):
def __init__(self, tv_loss_weight=1):
super(TVLoss, self).__init__()
self.tv_loss_weight = tv_loss_weight
def forward(self, x):
batch_size = x.size()[0]
h_x = x.size()[2]
w_x = x.size()[3]
count_h = self.tensor_size(x[:, :, 1:, :])
count_w = self.tensor_size(x[:, :, :, 1:])
h_tv = torch.pow((x[:, :, 1:, :] - x[:, :, :h_x - 1, :]), 2).sum()
w_tv = torch.pow((x[:, :, :, 1:] - x[:, :, :, :w_x - 1]), 2).sum()
return self.tv_loss_weight * 2 * (h_tv / count_h + w_tv / count_w) / batch_size
@staticmethod
def tensor_size(t):
return t.size()[1] * t.size()[2] * t.size()[3]
#
# if __name__ == "__main__":
# g_loss = GeneratorLoss()
# print(g_loss)
# class FRVSR_Criterion(torch.autograd.Function):
# def __init__(self):
# super(FRVSR_Criterion, self).__init__()
#
# def forward(self, lr_est, lr_img, hr_est, hr_img):
# #= input[0], input[1], input[2], input[3]
# assert (lr_est.shape == lr_img.shape)
# assert (hr_est.shape == hr_img.shape)
# return nn.MSELoss(lr_est, lr_img) + nn.MSELoss(hr_est, hr_img)
# run tests make sure that output is correct.
class TestFRVSR(unittest.TestCase):
def testResBlock(self):
block = ResBlock(3)
input = torch.rand(2, 3, 64, 112)
output = block(input)
self.assertEqual(input.shape, output.shape)
def testConvLeaky(self):
block = ConvLeaky(3, 32)
input = torch.rand(2, 3, 64, 112)
output = block(input)
self.assertEqual(output.shape, torch.empty(2, 32, 64, 112).shape)
def testFNetBlockMaxPool(self):
block = FNetBlock(3, 32, "maxpool")
input = torch.rand(2, 3, 64, 112)
output = block(input)
self.assertEqual(output.shape, torch.empty(2, 32, 32, 56).shape)
def testFNetBlockInterPolate(self):
block = FNetBlock(3, 32, "bilinear")
input = torch.rand(2, 3, 32, 56)
output = block(input)
self.assertEqual(output.shape, torch.empty(2, 32, 64, 112).shape)
def testSRNet(self):
block = SRNet()
input = torch.rand(2, 51, 32, 56)
output = block(input)
self.assertEqual(output.shape, torch.empty(2, 3, 128, 224).shape)
block = SRNet()
input = torch.rand(2, 51, 64, 64)
output = block(input)
self.assertEqual(output.shape, torch.empty(2, 3, 256, 256).shape)
def testFNet(self):
block = FNet()
input = torch.rand(2, 6, 32, 56)
output = block(input)
self.assertEqual(output.shape, torch.empty(2, 2, 32, 56).shape)
def testFRVSR(self):
H = 16
W = 16
block = FRVSR(4, H, W)
input = torch.rand(7, 4, 3, H, W)
block.init_hidden(torch.device("cuda:0" if torch.cuda.is_available() else "cpu"))
for batch_frames in input:
output1, output2 = block(batch_frames)
self.assertEqual(output1.shape, torch.empty(4, 3, H * 4, W * 4).shape)
self.assertEqual(output2.shape, torch.empty(4, 3, H, W).shape)
# def testCriterion(self):
# H = 16
# W = 16
# input = torch.rand(7, 4, 3, H, W)
# output = torch.rand(4, 3, H * 4, W * 4)
# criterion = FRVSR_Criterion()
# self.assertIsInstance(criterion(input, input, output, output), type(0.1))
if __name__ == '__main__':
unittest.main()