-
Notifications
You must be signed in to change notification settings - Fork 0
/
5.0035347.nb
1742 lines (1712 loc) · 85.6 KB
/
5.0035347.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 87532, 1734]
NotebookOptionsPosition[ 85671, 1696]
NotebookOutlinePosition[ 86066, 1712]
CellTagsIndexPosition[ 86023, 1709]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[TextData[StyleBox["Hydrodynamical model of QED cascade expansion in an \
extremely strong laser pulse", "Title",
FontWeight->"Regular",
FontColor->RGBColor[
0.2964217593652247, 0.6292210269321736, 0.2727702754253452]]], "Text",
CellChangeTimes->{{3.822636147120782*^9, 3.822636149053595*^9}, {
3.822636240732341*^9, 3.82263625191656*^9}, {3.822637212068983*^9,
3.822637212721833*^9}, 3.823094727278884*^9, {3.833550853313994*^9,
3.833550862795432*^9}, {3.833795877595468*^9, 3.833795921123438*^9}, {
3.8337976113677797`*^9, 3.8337976215952806`*^9}, {3.8368849167533627`*^9,
3.836884938754459*^9}, {3.836885017010099*^9, 3.83688501802005*^9}, {
3.838269556945876*^9, 3.8382695941735563`*^9}, {3.838269705424317*^9,
3.8382697091991663`*^9}, 3.8831173137769127`*^9, {3.8862456737560463`*^9,
3.886245692971734*^9},
3.886740244200638*^9},ExpressionUUID->"1cc0c24e-6b38-49ea-be39-\
d1d09dc83547"],
Cell[TextData[{
StyleBox["Paper: Samsonov et al, Matter Radiat. Extremes 6, 034401 (2021); \
https://doi.org/10.1063/5.0035347\nNotebook: \[CapitalOAcute]scar Amaro, \
March 2023 @", "Section",
FontSize->24,
FontColor->GrayLevel[0]],
StyleBox[ButtonBox[" ",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://epp.ist.utl.pt/"], None},
ButtonNote->"http://epp.ist.utl.pt/"], "Section",
FontSize->24,
FontColor->GrayLevel[0]],
StyleBox[ButtonBox["GoLP-EPP",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://epp.ist.utl.pt/"], None},
ButtonNote->"http://epp.ist.utl.pt/"], "Section",
FontSize->24,
FontVariations->{"Underline"->True},
FontColor->GrayLevel[0]]
}], "Text",
CellChangeTimes->{{3.8226362283387003`*^9, 3.822636334723393*^9},
3.822636391632341*^9, {3.8226372468331547`*^9, 3.822637246833611*^9}, {
3.832755002125525*^9, 3.8327550028655148`*^9}, {3.8328159555988827`*^9,
3.8328159559877577`*^9}, {3.833550866979972*^9, 3.8335508675107203`*^9}, {
3.8337959288036613`*^9, 3.833795929749477*^9}, {3.836884940028832*^9,
3.836884940645474*^9}, {3.8382695643134193`*^9, 3.8382695830795717`*^9}, {
3.838269712757929*^9, 3.838269733266273*^9}, 3.88181907427205*^9, {
3.883117777672618*^9, 3.88311778570466*^9}, {3.886245698420047*^9,
3.886245703659898*^9}, {3.886245774881447*^9, 3.886245789441456*^9}, {
3.886246002137081*^9, 3.886246005361104*^9}, {3.886740253248687*^9,
3.886740263884281*^9}},
FontSize->14,ExpressionUUID->"a9dc943e-188a-452d-8ae6-c14a36b78b46"],
Cell[TextData[{
StyleBox["Introduction", "Section",
FontSize->24,
FontWeight->"Bold",
FontColor->GrayLevel[0]],
StyleBox["\nWe compare this notebook\[CloseCurlyQuote]s implementation with \
data retrieved from the paper (with WebPlotDigitizer).", "Section",
FontSize->24,
FontColor->GrayLevel[0]]
}], "Text",
CellChangeTimes->{{3.8226362283387003`*^9, 3.822636334723393*^9}, {
3.822636391632341*^9, 3.8226364148286*^9}, {3.822636632459257*^9,
3.82263666754714*^9}, {3.8226367225529222`*^9, 3.822636739164402*^9}, {
3.8230947324882936`*^9, 3.823094753820561*^9}, {3.833550870010079*^9,
3.8335508705241623`*^9}, {3.833552192734445*^9, 3.833552244447419*^9}, {
3.833795945276964*^9, 3.833795995813528*^9}, {3.833797624215995*^9,
3.833797700970443*^9}, {3.836884956779365*^9, 3.8368850450508223`*^9}, {
3.838269587610732*^9, 3.8382696377305927`*^9}, {3.838269737595594*^9,
3.838269819553781*^9}, {3.8862460104117203`*^9, 3.8862460355767508`*^9}, {
3.886328927112472*^9, 3.886328955088323*^9}, 3.886740269443964*^9},
FontSize->14,ExpressionUUID->"becf9cb0-1de0-4c4d-a443-2b59c2ec9de2"],
Cell[BoxData[
RowBox[{
RowBox[{"SetDirectory", "[",
RowBox[{"NotebookDirectory", "[", "]"}], "]"}], ";"}]], "Input",
CellLabel->"In[1]:=",ExpressionUUID->"3dabbe76-be7d-497f-bba0-05ff16595ceb"],
Cell[CellGroupData[{
Cell["Figure 10", "Chapter",
CellChangeTimes->{{3.88673874471723*^9,
3.886738745900879*^9}},ExpressionUUID->"2fe43724-2e88-4ecc-9733-\
833b56b3a4a2"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Clear", "[",
RowBox[{
"a0", ",", "p0", ",", "\[Theta]", ",", "\[Mu]", ",", "ct\[Lambda]", ",",
"\[Epsilon]0", ",", "\[CapitalDelta]\[Epsilon]acc", ",", "dataJoined"}],
"]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"a0", "=", "2500"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"p0", "=", "500"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Theta]", "=", "\[Pi]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Mu]", "=",
RowBox[{"ct\[Lambda]", "/", "3"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Epsilon]0", "=",
RowBox[{"Sqrt", "[",
RowBox[{"1", "+",
RowBox[{"p0", "^", "2"}]}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[CapitalDelta]\[Epsilon]acc", "=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"55",
RowBox[{"\[Mu]", "^", "2"}]}], ")"}], "^",
RowBox[{"(",
RowBox[{"1", "/", "3"}], ")"}]}], " ",
RowBox[{"a0", "^",
RowBox[{"(",
RowBox[{"2", "/", "3"}], ")"}]}], " ",
RowBox[{"\[Epsilon]0", "^",
RowBox[{"(",
RowBox[{"1", "/", "3"}], ")"}]}], " ",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}], ")"}], "^",
RowBox[{"(",
RowBox[{"1", "/", "3"}], ")"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dataJoined", "=", "False"}], ";"}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Import", "[", "\"\<data/fig10_Deacc.csv\>\"", "]"}], ",",
RowBox[{"Joined", "->", "dataJoined"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Red", ",",
RowBox[{"Opacity", "[", "0.3", "]"}]}], "}"}]}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"Frame", "->", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<ct/\[Lambda]\>\"", ",", "\"\<\[CapitalDelta]\[Epsilon]\>\""}],
"}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "10000"}], "}"}]}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Import", "[", "\"\<data/fig10_DeaccApprox.csv\>\"", "]"}], ",",
RowBox[{"Joined", "->", "dataJoined"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Dashed", ",", "Purple", ",",
RowBox[{"Opacity", "[", "0.3", "]"}]}], "}"}]}]}], "]"}], ",",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Import", "[", "\"\<data/fig10_Derad.csv\>\"", "]"}], ",",
RowBox[{"Joined", "->", "dataJoined"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Darker", "[",
RowBox[{"Darker", "[", "Green", "]"}], "]"}], ",",
RowBox[{"Opacity", "[", "0.3", "]"}]}], "}"}]}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Import", "[", "\"\<data/fig10_DeradApprox.csv\>\"", "]"}], ",",
RowBox[{"Joined", "->", "dataJoined"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Dashed", ",", "Cyan", ",",
RowBox[{"Opacity", "[", "0.3", "]"}]}], "}"}]}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{"\[CapitalDelta]\[Epsilon]acc", ",",
RowBox[{"{",
RowBox[{"ct\[Lambda]", ",", "0", ",", "5"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Directive", "[", "Purple", "]"}]}]}], "]"}]}], "}"}],
"]"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.851328139730352*^9, 3.851328191279245*^9}, {
3.85132824496657*^9, 3.8513283055660954`*^9}, {3.851328635334198*^9,
3.851328636112503*^9}, {3.851328692178795*^9, 3.851328741531605*^9}, {
3.886739898281539*^9, 3.886740112113574*^9}, {3.8867401826981487`*^9,
3.886740203073354*^9}, 3.886740351646667*^9, {3.8867403849173603`*^9,
3.88674043045146*^9}, {3.886740460780386*^9, 3.886740477271449*^9}, {
3.8867405379468527`*^9, 3.8867405506353893`*^9}, {3.886741851399652*^9,
3.8867418524816723`*^9}},
CellLabel->"In[27]:=",ExpressionUUID->"cf3e226c-e1b7-4400-bdad-c6c572b20415"],
Cell[BoxData[
GraphicsBox[{{{},
{RGBColor[1, 0, 0], PointSize[0.011000000000000001`], AbsoluteThickness[
1.6], Opacity[0.3], PointBox[CompressedData["
1:eJwVxX081HcAB/CfxyQP5+7S81oiJXpSw9Wr70dKD7N5qCQ2SWhCJ21FQuQh
qnmY0OZpXSFRebicp3MOZXGeSmvUJlyeDhcqXJ1tf7xf71XubAdPRYqiXP/z
/9Q+86u6k+cJRR+MFOnuFfSEBv5koMohgvHdFy4HnUCPRfgTVfV75MvBswb2
I2cgPf14fOxVMelxT9YVNAXDrt1UzrYuJ7QVg0Xv1S7DP+bZsKCXT2hnNyk9
FcWAV+C73XGFkFATX/CvSa6CF1NVFDpSTxI+pQj01RNgLhY4s0cbCSVIVwiJ
SQJvV4OS23gz2ScLZ3XLkjE1E7KHRm8j0oViB3ubVBSspX5VY3SQ7LlI1ojX
TfgeiRijmM/JQ5ebzPiA32AcrWw1w3xBEtJTnlm7ZUCDvtfO3+cl6WEIG1/E
ZkFZtl/Xa1E3cfuc/+HNZDaU+21eudS9Jm3SqSsv9W4h4q1he55ZD8kT1180
2MSB3HldKef6G5K28S5Xy+o2QluNUjP7eom+wY6uaHIHcivjCzct+knB0la5
fHsO1Aeulx+sEJN0jxKzwW9zkc+zPSzyHCCvCp+TnIA8WMfpvLPWGSLKJWKr
gcS7eOvy7Jqgaph05XLNtmblI8LkxlrWDxJSnB61PrzgHvTmHOtLGGPEPJyp
3ZVbAIe5wCrJ0Dg593TborSmQtSEfdNF75ESdyVdbffX9/FnmKvjxqZ3RL+0
U7757QNsS826dK9pgoQ8dwiqCXqIG/d78g2bJ8lQC2vSkyrCZMOqTk7zFDn0
h56fRkwR7F+7z60UvSeCOvWBYs1iFE1x1qWLPpD8qOC0ubhiaGuIDy5u+Uh6
O1lX/FRLwF69JjS5ZZqEz/9elhZVAhHrZB6tdYZkKavlnJKVwMQhr+Na6yzx
P+NBX3a2FFe9hz6ptcnIz77a1ZLBUoxcMjKMavtErCOP9FMuXOxP87FXaP9M
vjYa2/9VExd3HxQEh7TLiW1b5AOf7Y8w78nonZn2OSJJ4iX25T7CFvaiQZY3
hbjDkrMuzDL0zpp9DhyiULu1umNhSBmSop3oZd4KOPZRWnp9qAy76EGG74cU
sHHSNSHuWx6kGTd3mJ5SRIlbqIkXl4fsdRX2Z4YV0T7M2hu5uBx23C6vB6eU
cMjJuf9YWDkoS1nw6LAS+P6eO7J6ynG/eVnieh9ldM+ucqy2qoCr044c7xFl
JP0eLFnBqYBW/3eVuT4q2L+vMyJUsRJ8dkibeEQF1PiGJf8cr4SvLEO82lcV
dsUGxhHVlVgew589LlHFvKNhwt7lVWim/6Od7TsPTsvPdUYFVuFi5pz+35J5
mPKrXHOgowpGRl+ylvupIamGCtQyrkYXF7bOo2poNOnbszCiGnGWxz3S/ObD
I2xt6l/d1WCJwoNejM6HYrvfYMY2Pgadbv3MPK2OSFHmVEMsH2n9Qo7DmDrY
hVsi773hY59/Hy/h9ALsNC9umTKtwQeZUkvL2AL8lJOcLoutQU6Mfp8GWwPT
txryVv9dA0fGnukD4xrg2wZ3GSwRQDXLUzOWrYkAzny+DwQoNYrWezKuidJV
evVhpwTweJRjpuKvhQ9ZrKe/JAvA3PXExkqqhfzJxsK/KgWoFw0cD/fXhjm1
aUKrX4CAo2rna6TaYP4m/tFTvRaJAczHoeY0XHQzWBpnWgtv3u22jEAaOLHr
uhWcamEp39pdxaNhS0rCSrNLtVi8u0HcPU2DaaCfZeadWkhjD0tnzXWw1fnA
CZWmWjS2imeXBOlgqPCl9dcTtcheeE7FolwHw/HcH4oXCXHeRZXmNKODrD4r
m+mdQtj+nrL0vAUdowfZBZfchTAcWGOQEkTHrdzP8Y9jhZgzLtvILadD95hd
/LECIV4E7GU9n6FjYkaF/qhDiPu8P3dPWjDgVeSkY/teiGj5SVv6BQYsbbSS
7yyrg+vu6aObKxiIr7KYMiF12BZ3xcNuloHETF3dGx510GxbzGazmDDOSCjd
GV2HDHlg0wZPJoLSRZcZqXX4F9CQ3JM=
"]]}, {{}, {}}}, {{},
{RGBColor[0.5, 0, 0.5], PointSize[0.011000000000000001`],
AbsoluteThickness[1.6], Opacity[0.3], Dashing[{Small, Small}],
PointBox[CompressedData["
1:eJwVxX04E3gAB/BZI3kZhrohRI9KoetUUvl9PYc6Tx4RJlQKKfSQK72cxHkr
sVPpkk62C0nyOixmtqXLS1666Omi8pbFrUOGvLTu7o/P81l1JNIzhEqhUPb9
5/8nkh+vm9tYTuIDuCPfTQYh6k7X6rYtAtI/OWB5ICAG/JKI7T4rJYRSJh6w
LIlFUVz0U8fTT4npiPK5e1+TsLYvJmrTmTbCaTrtxV5zCXosBwU7tIvstaLN
jgWyIRuMV1cR/kk++Cr/lriYCVlb4vOF4z0ku/HGxWCrLMh4KTcn9V+R+M5O
Tby/geHcywek4tckMKOh2WE0G8Mp6eZvTrwh/ZaJwdrlOWDoX7I6dqSf7NZr
cR0fyoXCbx3vbsYA0Q434cgD8kBXpE0doA+R1UnOucnGXKRFp7/0DR4mtN2e
gTPTXNRFl3ZctR8hJffjRFPn78JeWlaRnikl8a+zoqJ35uMl/6Sbyo5RIpJG
ChQPCjDi/yJdJBgjzR6iEGpoIRgB00lz12SEI7NoTBq+h2tdM6HyDx9Jkc+Z
Y5fyiuD59axANjpOkuLHN7LUiiHd1tA5lTdB0sfIa78nxdjloZiL5EwSReNR
Np9ZgnazMmZ74CfSPRHrsLWvBKc9TD8VxUwRhoKV9ti1FFXq3KDCVXLC02WZ
+IyXQtd8MMPMbJo8fDWcK9Erxy35tYcXB6fJ8snxaaWYcjia01L8P8+QWpXx
tCyDCrTIeQV8/izx8rXt8z1VgUhzi7isjs8kPa3ro5V+JWblL3Mn2XOk6XNl
vW14JXLNd8e0588Tm+DLf7BpVTihsc4p7fwCuaVemGGwrwr+nq2tTwoWSR5N
tTBsoQpD5j+NmR39QrjN4lE7Fx6YCXtMhIUKwo7QapB94IHr+cXBMPQreZD8
xpm1rRpjLOm23n0UtB4JYWR2V6NU1NiyjEcBs/pE1sWVNXCNXBvM8lKC6c4B
Q6OqGtBfUeTJPCUIVtr1bZivQVHKcfYLLyrotvPcsYxaRIw7GlOrqVjv1mzp
/bYWqneK+e7eSzDUoxg0CuIjinHbxFq0BHsuGBYXVfBR+szw6vpwGpIdWixb
ySNEb5ab+rXR0JP5vOTRpUfwWUg/vjRBGX797eGLenUwCA6Z2zygjO/dfwyz
9qsDj9FxPTFBBVlylzy73joYpQrnD8tUoMaOEdmZ1yPAkUQcurkUW2RmPpsK
6tFUbfNiJ1UVJv7NXsFj9XBN7f+UI1FFmnd5h9pJAegT/J9bzJZB5JmvfpAn
QPGdVStXPF6Gt27uNTaWDeAZW/oX2KmBbk8qgyIakD0suev5jxoq40KOlsoa
QNlfpfbtfnX8nD1j4rRBCAdd21hrmgY417mt+r8LUZi6ekgjUgPWOrN5ij4h
rPf3UMNsNAGDXyb89zfi1/Ynx3fnaGLmrXqI9/VGdKe69Do707GRR12Tv0SE
/qXuzO46Oq4sdxzgmIrQ1C49nBClBfQ2eOf4idDhNpGnNaIFY5e4couzIvx1
2enUWzdt5GY+lVSUiaDZJLjnlqgNY3sro8Y2Ebo23NgaO6SNE4a7NBeUxKCF
aob//Y0O/FcxV8Qbi9Hc+X6eeU4HLyVB3Sl7xVhcdtD6cqkO4qomnuWHi9EY
vUVYS2cAYfG3GXliTJWUTlo4MSD108zaWCdGrX5qgnc+A52+TUplMjEE3lc4
Ru8Y2CFksghNAs+mccO7Trqwoww022+XIEUR6s44rwuO16Y3Dzwk+CEU7/Ba
FwtrDq0NSJDgApfPKNfSw/2r0262tyT4FxDwfyE=
"]]}, {{}, {}}}, {{},
{RGBColor[0,
NCache[
Rational[4, 9], 0.4444444444444444], 0], PointSize[
0.011000000000000001`], AbsoluteThickness[1.6], Opacity[0.3],
PointBox[CompressedData["
1:eJwVynk4FHgAxvFJLKGMW4eaHLUpstj1pPi9RKfdsI/FE5pCScg5uQ2DMWNc
2eRoGaWynWIdsZvJlSjH5lE6mDIxRA2hQlr7x/t8n8/zvBuPnXbykaJQKI5L
+7+U6v66CzeyCEW3lDmQuh9BQw/+HTX5i1COOMZa5Xug9ob/zt+0GwnTvu7p
XMsx+N6cXmvBeEiY0hwue/YEeB3kNeefHiL4WwHcaT/4uyS+p6j1EmZus9a7
oVMofaRQMdj4ktBXZ7uIZYNhFLJveLhGSIS2o4lt5sGI6zI4XzT0htBVQw4x
zEJhsXjjXa5IROi6bp63j4Rhbtt2ZL4dJkxTBIi54ag+fOd39rCY0MtZ4h7D
M2BwTUfjR8YIhbvrvol2BEzuVllGiMcJ32smP0cxElMj5meDRt8TpmtLunB1
FFwUPELNwiVEqHHioPO7KNToFP1RHj5JmJINetXPo6FuMfhgG2OK0NqfLWi0
xyDckTZVxvhI6AFexcWxsXjie3Sd/plpQtm7LoISEAdT5sU9JWdmCMaurOHQ
4pF9fihIO2KW8Mv2Pfs6GY/JW3qF+RGfiOTyScsmJyYOtfq0qEd+JsbJFhdi
65m4/erKh+zIL6S7L37CWj0BK2dGVq+KmiOUagf7hdgEBChuseVGzRNKlHxW
e1sCOnT9Ar+LXiD8jkOvM3QSsXXn9bzE6K8E2udMfo1JBMdpvHExepEIA5+z
NPsSMXrScCIq5huh/nL9TY8VC6WoSYu2oqC8WGKam8eC06On/Lv3KKD2rfcL
7GVByvVz1SerZSjf7F1vYpSEiiGtjh8bloHmeXZS3i8J9NM7hKFECoLbT226
mpJAnXebudMgBdqwTOTVb0kQpETJS8hyCMwPtp9yS0aQSuEGI8Fy0DlZa40r
k7G+qN7MH9IQNNxzlPuQjM4tL/dfEyyZFXGub0cK4qoWPMWQQfdek/7SpBQY
WWuHbbq/ZIXxdaFdKXj5yJLjbf0dursu063XsMFz9Sy6eH/JOUdKlXzY2CWK
qxRaywLt6c9H+GyMny5uW98oC2qo8fL2x2wUzDe8creRA9V8bE+eVioOsIVT
BY1yKE/dnucekoo5lWVy/TYrQG3w6DS7lYprRRu1NZtWIGgmTXrlWCpcDWxM
nHfLg3nXbt8LMw7kqo/tzWmSh/BDaFxlEAe11iz3nt0KkFQaNibUc+D7+FKw
UrMCyt27x7zEHGi4Naf8bKsIh1vqu7634aJVJCpMa1YEPaQrfpbHBSNI5s5D
25XISh8ueHONi00L+q2yLUt25A+Uz3DRy97zws5uFSTsTjXOD2lIUj0hYbWs
gsA42PKUZxrMitkyjXZK6J42SNjxZxpEBmVrKK1KMN7qVqP8Ng37D4s0N+hS
QemdH/yozMPGkjAdK68l51XpNrrz8GVY2tDjEhX0ziG3gjweuredM48ZooI/
OheWUs1DWYi+TaGuMrATrQeo6WDWVtnXeSmDHxy4oGOfDtdFO5f+S8oQ8pI1
lfzSsd227+jnIWUEDbT7PmlKhyz3uL+mngrADsiukqRjsGuW8ZO3CqjG1Lrz
2hmoUWcnOJeqgDb98KuPbwYyDmvywkRLf6XXWk4pGThecjU3R08VDk8K3Gk9
GbAaMS+p8FYFLcYyWWoxAxqGbdd7SlUh0RPeFBlkYiLEtVoiWrI4f7IiPBMt
tWKBkr4amAz9b2VJmdg80Su32VkNtDY/h4CBTPwH4HNemw==
"]]}, {{}, {}}}, {{},
{RGBColor[0, 1, 1], PointSize[0.011000000000000001`], AbsoluteThickness[
1.6], Opacity[0.3], Dashing[{Small, Small}], PointBox[CompressedData["
1:eJwB8QMO/CFib1JlAgAAAD4AAAACAAAA4H54dSUGoz8AMJaTOP1CQHDMypjf
3rY/AAVgLRVQU0CofnLHQXXHPwBzAf+Z1mFAaH/6pyXOzj8A+maCBbhlQAwp
RIp6v9U/AHB98UvTbECEhkgza8HZPwD9p3tuoW9AxBLPMFTE3z+gphXjxbxy
QB646Wwi4+E/YCNZXq9fdEBaW22kFTrlP8DmsR6qaXdAiluPnE4Q5z+APQh0
r+J4QFYtczABkuo/ILrx7d2ee0CCLZUoOmjsP0DwxSL783xAMqK4A26U7z+g
qEjY/fF/QC9R7X1TtfA/IPJDiYumgEAVOt/HLHbyPzCVIau25oFALTrwQ0lh
8z+Amt8vVXmCQIP0gTFj9/Q/gEiTXHjFg0CZ9JKtf+L1P0BTvOYSXoRAgd2E
91ij9z/A+wQOOqSFQJfdlXN1jvg/oPtXjdwwhkB9xoe9Tk/6P6B4SIkjR4dA
Ta9oiwsl+z8QczADys2HQOuAKieF0Pw/sBCjH/kHiUABgTujobv9PyALi5mf
jolA6Wkt7Xp8/z+Qjeaa4qqKQAA1n7TLMwBAkIJjD40ri0AqEmir2P4AQNB8
ngjWPoxANpJw6WZ0AUCg6fp0hraMQKiGaY7TVAJAcN7KaNPDjUC0BnLMYcoC
QLBQktp/QY5AKPtqcc6qA0BQWw7kvGaPQJBvW9isFQRAIMhqUG3ej0BeWDym
aesEQLCXVxtibpBAathE5PdgBUBQB8BKv6KQQNzMPYlkQQZA8DriveohkUDo
TEbH8rYGQLAya/VBX5FAFCoPvv+BB0DwpDJn7tyRQCCqF/yN9wdAwE3Vj9AJ
kkCSnhCh+tcIQChIvQl3kJJAnh4Z34hNCUBIAaFCTc+SQBATEoT1LQpAaOtH
rP9Dk0AckxrCg6MKQDiU6tThcJNASHDjuJBuC0DYxwxIDfCTQFTw6/Ye5AtA
ICc0Z3YSlEDG5OSbi8QMQECk0eManJRA0mTt2Rk6DUAoQp4BBb2UQERZ5n6G
Gg5A4LnQeK1AlUBQ2e68FJAOQEBdCJyTZ5VAfLa3syFbD0CwCAoHxd2VQIY2
wPGv0A9AUHhyNiISlkB9lVxLjlgQQLiQfY5hc5ZAg9VgalWTEEBYk9zQsLyW
QLxP3byLAxFAKG1CKm8fl0DCj+HbUj4RQPAV5VJRTJdAWP5FV9mjEUDAgkG/
AcSXQF0+Snag3hFAiJjt1PHbl0CXuMbI1k4SQMgKtUaeWZhAnfjK552JEkCY
s1dvgIaYQNZyRzrU+RJAAMxix7/nmEDcsktZmzQTQIBGoQEVKJlAciGw1CGa
E0BwqCdjzZOZQHdhtPPo1BNAEMmpg7W3mUDxvNRb
"]]}, {{}, {}}}, {{{}, {},
TagBox[
{RGBColor[0.5, 0, 0.5], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwVzWs81PkCx3GSLkjM/9QWYZRdwqK2hI3fd3G6qLU5sk5qw5Bxi41IiBBy
MgiVXNa1dpNLLGqQy/yTcpmWsVHxamooO5FcJtea3fPg83o//GizAv9zYpmM
jIz3P/3fvCjWim2eEVbwfFYaKKgmDwTMg87MI2SnW8Z3GZ57IH3YFMdk+pC+
8Z8HBtocoJxed0dhIIh4WXlvn9zvjLwWjpY88yzx3bVjvYvpMRhOeKZI2dGk
P/dMkcdxNwwp//J5qT+W1F1YafwxggV/y5CTs1pJ5OyPhQdcPL3we5+wZMYm
mdQdmunOMfPGgt/BwUl2KlEwDgrrWvSBbfflLz/2pxPVI+etopxPQrDonflB
6zrRck2x5LWdQmi7pslEVTbx6dUTeMcEQS2jr3PcJpdMBZms8jUPBksfcu/Y
+UQmtB8J+acRVqbIneovIq571gcP7T+DlS9e645r3SLPn2z+cp9pJAZa7oeM
jd4iUxkM+fnOSJTezKLfVZWSVLZ6tZ7bOdgH2buKbcqIkbnZdXIhCldX1199
y64kOmc49kePnwcj99Gyyf5q8uh9z3/fR8SisCP/1DstLjH5NGTo6JmAmaxa
/ZfJXLKLhNcJSxKwh90p6p3nkkwzdhNjJAFjcrNO9YJ6snHuhrG/ZyLMLO0t
khIbiYn2rne6rhfxR+XSMt2JZiK7va1Mf8//EN1haLfNlSauFeFD5iIOKiqT
XvgbdZDivzhNgbbpEDPEyXbuHaRk7qm26rF06IbaWelldhDbLT1HioPTUbBb
sVA030H2nuh5lV2UjvTHyV4ubZ1ktdjW47k0HaGi1Mm9x7qJlzi3nns3A/mK
nXGq//6DxP8Qc6tX4wrYpOf6WJCAyPoxzV49uoaAka2imopnpKOSs/phQS4U
tC/ovjQTksbIByzz+gKkqHTqF7qJCG9Cqe1NXxFYLw43y3W9IU/1hoNTl0pw
qu0CK1BXTA6Hz070S2+i6mclxw37xwlXyksb7foNhRF+YhPnDyQ8/Ib8rxWl
iM1fcpgZmyRTwi3yce5lkBEI0Rg+Td5nBkclSsvx1WmvsMP6EqK5LU/tbE0l
hiXXflS8/5FEdxtkjxbcgd2I77n0U3PkakXpJd3gKtgPpxloai6QsXtr1J/t
roaYZp1/VL5I7hy1fbJBUg0j1acaNq6fyJXQYY+13N+hQCTug9OfidHW3/Sy
/Guwd9xldrOTDK6IhFl3DWoxwPOUdTGURfxEw5PNw7WovfjgOFMii/bJT+si
OXXwkg8R8vnLkBo2snDY+i48giJqlbLlAFNxWuPoXRizDfgH3ZdjyMm7qibp
Hp4wDBVDzOXBcujPWmXKRUNFbI6h3Ar8YDrF7urjIkJW/1DX0Apw5o5NNUXV
Q2EwfF9AzUr4rrNyurSlASM3tTPzI1chQGulWlxDAzL1Ni7nOq3GrSfa1tHH
G5GW7dXuzlTAvximr2UljXDJ/Imv9FYBP8X7VK5LvI852xvz+U2K2BtYESCn
0wTRiHUYL1EJOl3qm2Rrm1BkuU29230NXEiqtPJQM8rjQ1TZXyuDfrWTUSts
RqKTxwE5iTL4YQJNZ9MW7BwsvJXYvRYUP1p6LaYFWVtzyrsPqKBfvTjOor0F
0S2crANcFZxyrX+szGjF9+pONzp0VKGSIy1/69KK7wLaj6omqeKbiTljx19a
kb+JpdMlUUWSdorG0JtW6NC/XrU/ysCrZ6vMGPo8pH3N0+9tYiB+b/K35/x4
8Jpe3vNYn8J+oTB0pooHVtUUMymVQk7AF+5W0zz4xzou2V2mEFugPOo2w0OI
Y02/UgaFV8mOXnESHi5KQlLSrlK43dSx79EsDxXm84vX8ihU51264bDEw3yr
9OnN2xQ8vyfNLHkaab1KnAftFHbYFodHfUEju/ikd8JjCjIvHMbzN9AoPs23
2ddJwVIl0Ll1I4269WkLnXwKdp7zqss30Rh0obwFf1IoVPBlJjFp6Io22rwW
UfBxyyu+vJWGSU24ZskIhUa1Sk61Pg2L+BfzJ95SsM4kgQIDGgd18+78JabA
bxNuWGdEI8iPqTk5SeG5BlZkbacRuTtmvnqaggbfo+zeNzTi17zuOy2hoGKh
bPdsB42syuJLc3P//Miin9ouGkXnl7PrFyic/ZN8sDCjcdvhhHXkEoU05lr/
o+Y0ajY/1LD6TCFG0/dlhAWNpumv5qVSCuNdDna539L4G8XKHRQ=
"]]},
Annotation[#, "Charting`Private`Tag$9575#1"]& ]}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"\[CapitalDelta]\[Epsilon]\"", TraditionalForm], None}, {
FormBox["\"ct/\[Lambda]\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0, 5.098811320552753}, {0, 10000}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.851328288644462*^9, 3.851328305859681*^9},
3.851328636901482*^9, {3.851328692742681*^9, 3.851328741876932*^9},
3.886739943492099*^9, {3.886739981088788*^9, 3.8867401129177113`*^9}, {
3.886740185104677*^9, 3.88674020344248*^9}, 3.886740272279813*^9,
3.886740349014389*^9, {3.8867403860108852`*^9, 3.886740431058138*^9}, {
3.8867404614172363`*^9, 3.886740477592506*^9}, 3.886740551227302*^9,
3.886741820887843*^9, 3.886741853155429*^9},
CellLabel->"Out[35]=",ExpressionUUID->"9978b3d8-4c1f-4a3d-8ad4-8c17f4bacc34"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Figure 11", "Chapter",
CellChangeTimes->{{3.88673874471723*^9,
3.886738755532662*^9}},ExpressionUUID->"d09ce6f1-33ce-4a6a-8d0b-\
7cbfa452046e"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Clear", "[",
RowBox[{
"vx", ",", "np", ",", "\[Nu]", ",", "\[CapitalEpsilon]", ",", "sols", ",",
"S"}], "]"}], "\[IndentingNewLine]",
RowBox[{"sols", "=",
RowBox[{
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
FractionBox["1", "vx"], "==",
RowBox[{"Sqrt", "[",
RowBox[{"1", "+",
RowBox[{
FractionBox[
RowBox[{"2", "np", " ", "\[Nu]"}], "\[CapitalEpsilon]"],
RowBox[{"Sqrt", "[",
RowBox[{"1", "-",
RowBox[{"vx", "^", "2"}]}], "]"}]}]}], "]"}]}], ",", "vx"}], "]"}],
"//", "Simplify"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"S", "=",
RowBox[{"4", "np", " ",
RowBox[{"\[Nu]", "/", "\[CapitalEpsilon]"}]}]}], ";",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"sols", "[",
RowBox[{"[",
RowBox[{"5", ",", "1", ",", "2"}], "]"}], "]"}], "^", "2"}], "-",
RowBox[{"(",
FractionBox["2",
RowBox[{"1", "+",
RowBox[{"Sqrt", "[",
RowBox[{"1", "+",
RowBox[{"S", "^", "2"}]}], "]"}]}]], ")"}]}], ")"}], "//",
"FullSimplify"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"(*", " ",
RowBox[{"they", " ", "are", " ", "the", " ", "same", " ", "expression"}],
" ", "*)"}]}]}], "Input",
CellChangeTimes->{{3.886740815135901*^9, 3.8867412374165583`*^9}},
CellLabel->"In[11]:=",ExpressionUUID->"d14d9c19-0393-41d1-b9dd-71bba9bc047b"],
Cell[BoxData[
TemplateBox[{
"Solve", "nongen",
"\"Solutions may not be valid for all values of parameters.\"", 2, 12, 1,
18704322830115326302, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{
3.886740850478283*^9, {3.8867408824011383`*^9, 3.8867412380037603`*^9},
3.886741821130351*^9},
CellLabel->
"During evaluation of \
In[11]:=",ExpressionUUID->"cc00e3bf-55ba-44f7-b368-f12ddb8ac58b"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"vx", "\[Rule]", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"vx", "\[Rule]",
RowBox[{"-",
FractionBox[
SqrtBox[
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["\[CapitalEpsilon]", "2"], "+",
SqrtBox[
RowBox[{
SuperscriptBox["\[CapitalEpsilon]", "4"], "+",
RowBox[{"16", " ",
SuperscriptBox["np", "2"], " ",
SuperscriptBox["\[CapitalEpsilon]", "2"], " ",
SuperscriptBox["\[Nu]", "2"]}]}]]}],
RowBox[{
SuperscriptBox["np", "2"], " ",
SuperscriptBox["\[Nu]", "2"]}]]}]],
RowBox[{"2", " ",
SqrtBox["2"]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"vx", "\[Rule]",
FractionBox[
SqrtBox[
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["\[CapitalEpsilon]", "2"], "+",
SqrtBox[
RowBox[{
SuperscriptBox["\[CapitalEpsilon]", "4"], "+",
RowBox[{"16", " ",
SuperscriptBox["np", "2"], " ",
SuperscriptBox["\[CapitalEpsilon]", "2"], " ",
SuperscriptBox["\[Nu]", "2"]}]}]]}],
RowBox[{
SuperscriptBox["np", "2"], " ",
SuperscriptBox["\[Nu]", "2"]}]]}]],
RowBox[{"2", " ",
SqrtBox["2"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"vx", "\[Rule]",
RowBox[{"-",
FractionBox[
SqrtBox[
FractionBox[
RowBox[{
RowBox[{"-",
SuperscriptBox["\[CapitalEpsilon]", "2"]}], "+",
SqrtBox[
RowBox[{
SuperscriptBox["\[CapitalEpsilon]", "4"], "+",
RowBox[{"16", " ",
SuperscriptBox["np", "2"], " ",
SuperscriptBox["\[CapitalEpsilon]", "2"], " ",
SuperscriptBox["\[Nu]", "2"]}]}]]}],
RowBox[{
SuperscriptBox["np", "2"], " ",
SuperscriptBox["\[Nu]", "2"]}]]],
RowBox[{"2", " ",
SqrtBox["2"]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"vx", "\[Rule]",
FractionBox[
SqrtBox[
FractionBox[
RowBox[{
RowBox[{"-",
SuperscriptBox["\[CapitalEpsilon]", "2"]}], "+",
SqrtBox[
RowBox[{
SuperscriptBox["\[CapitalEpsilon]", "4"], "+",
RowBox[{"16", " ",
SuperscriptBox["np", "2"], " ",
SuperscriptBox["\[CapitalEpsilon]", "2"], " ",
SuperscriptBox["\[Nu]", "2"]}]}]]}],
RowBox[{
SuperscriptBox["np", "2"], " ",
SuperscriptBox["\[Nu]", "2"]}]]],
RowBox[{"2", " ",
SqrtBox["2"]}]]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{
3.8867408504895906`*^9, {3.886740882483643*^9, 3.886741238012961*^9},
3.8867418212098427`*^9},
CellLabel->"Out[12]=",ExpressionUUID->"8c3027f5-b959-49e4-870c-802074fa2831"],
Cell[BoxData[
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-",
SuperscriptBox["\[CapitalEpsilon]", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox[
RowBox[{"16", " ",
SuperscriptBox["np", "2"], " ",
SuperscriptBox["\[Nu]", "2"]}],
SuperscriptBox["\[CapitalEpsilon]", "2"]]}]]}], "+",
SqrtBox[
RowBox[{
SuperscriptBox["\[CapitalEpsilon]", "4"], "+",
RowBox[{"16", " ",
SuperscriptBox["np", "2"], " ",
SuperscriptBox["\[CapitalEpsilon]", "2"], " ",
SuperscriptBox["\[Nu]", "2"]}]}]]}],
RowBox[{"8", " ",
SuperscriptBox["np", "2"], " ",
SuperscriptBox["\[Nu]", "2"]}]]], "Output",
CellChangeTimes->{
3.8867408504895906`*^9, {3.886740882483643*^9, 3.886741238012961*^9},
3.886741821381344*^9},
CellLabel->"Out[13]=",ExpressionUUID->"99db5f87-66fe-4099-857d-76188485e870"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Clear", "[",
RowBox[{
"dataJoined", ",", "\[Nu]", ",", "S", ",", "np", ",", "\[CapitalEpsilon]"}],
"]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Nu]", "=", "1"}], ";"}],
RowBox[{"(*", " ",
RowBox[{
RowBox[{"\[Nu]", "^", "2"}], "=", "1"}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"vx", " ", "=", " ",
RowBox[{"Sqrt", "[",
FractionBox["2",
RowBox[{"1", "+",
RowBox[{"Sqrt", "[",
RowBox[{"1", "+",
RowBox[{"S", "^", "2"}]}], "]"}]}]], "]"}]}], ";"}],
RowBox[{"(*", " ",
RowBox[{"(", "B17", ")"}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"S", "=",
RowBox[{"4", "np", " ",
RowBox[{"\[Nu]", "/", "\[CapitalEpsilon]"}]}]}], ";"}],
RowBox[{"(*", " ",
RowBox[{"(", "B18", ")"}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[CapitalEpsilon]", "=",
RowBox[{"1", "/", "3"}]}], ";"}],
RowBox[{"(*", " ",
RowBox[{
"value", " ", "of", " ", "\[CapitalEpsilon]", " ", "is", " ", "not", " ",
"explicit", " ", "in", " ", "text"}], " ", "*)"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dataJoined", "=", "False"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"npX", "=",
RowBox[{
RowBox[{"Import", "[", "\"\<data/fig11a_np.csv\>\"", "]"}], "[",
RowBox[{"[",
RowBox[{"All", ",", "1"}], "]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"np", "=",
RowBox[{
RowBox[{"Import", "[", "\"\<data/fig11a_np.csv\>\"", "]"}], "[",
RowBox[{"[",
RowBox[{"All", ",", "2"}], "]"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Show", "[",
RowBox[{"{",
RowBox[{
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Import", "[", "\"\<data/fig11a_np.csv\>\"", "]"}], ",",
RowBox[{"Joined", "->", "dataJoined"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Black", ",",
RowBox[{"Opacity", "[", "0.3", "]"}]}], "}"}]}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"Frame", "->", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<x/\[Lambda]\>\"", ",", "\"\<vx,np\>\""}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "1.3"}], "}"}]}], ",",
RowBox[{"PlotLabel", "\[Rule]", "\"\<Fig11a\>\""}]}], "]"}], ",",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Import", "[", "\"\<data/fig11a_approx.csv\>\"", "]"}], ",",
RowBox[{"Joined", "->", "dataJoined"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Red", ",",
RowBox[{"Opacity", "[", "0.3", "]"}]}], "}"}]}]}], "]"}], ",",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Transpose", "[",
RowBox[{"{",
RowBox[{"npX", ",", "vx"}], "}"}], "]"}], ",",
RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}]}], "}"}], "]"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{"Clear", "[",
RowBox[{"np", ",", "npX"}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"npX", "=",
RowBox[{
RowBox[{"Import", "[", "\"\<data/fig11b_np.csv\>\"", "]"}], "[",
RowBox[{"[",
RowBox[{"All", ",", "1"}], "]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"np", "=",
RowBox[{
RowBox[{"Import", "[", "\"\<data/fig11b_np.csv\>\"", "]"}], "[",
RowBox[{"[",
RowBox[{"All", ",", "2"}], "]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"{",
RowBox[{
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Import", "[", "\"\<data/fig11b_np.csv\>\"", "]"}], ",",
RowBox[{"Joined", "->", "dataJoined"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Black", ",",
RowBox[{"Opacity", "[", "0.3", "]"}]}], "}"}]}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"Frame", "->", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<x/\[Lambda]\>\"", ",", "\"\<vx,np\>\""}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "1.3"}], "}"}]}], ",",
RowBox[{"PlotLabel", "\[Rule]", "\"\<Fig11b\>\""}]}], "]"}], ",",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Import", "[", "\"\<data/fig11b_approx.csv\>\"", "]"}], ",",
RowBox[{"Joined", "->", "dataJoined"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Red", ",",
RowBox[{"Opacity", "[", "0.3", "]"}]}], "}"}]}]}], "]"}], ",",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Import", "[", "\"\<data/fig11b_vx.csv\>\"", "]"}], ",",
RowBox[{"Joined", "->", "dataJoined"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Darker", "[",
RowBox[{"Darker", "[", "Green", "]"}], "]"}], ",",
RowBox[{"Opacity", "[", "0.3", "]"}]}], "}"}]}]}], "]"}], ",",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Transpose", "[",
RowBox[{"{",
RowBox[{"npX", ",", "vx"}], "}"}], "]"}], ",",
RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}]}], "}"}],
"]"}]}], "Input",
CellChangeTimes->{{3.8867405727453213`*^9, 3.8867408072422047`*^9}, {
3.886741287217507*^9, 3.886741560622281*^9}, {3.8867416295679083`*^9,
3.886741653364643*^9}, {3.886741687645372*^9, 3.886741695397008*^9}, {
3.886741860866782*^9, 3.886741867059133*^9}},
CellLabel->"In[62]:=",ExpressionUUID->"6542d50a-619c-447f-bc84-d708faf77ead"],
Cell[BoxData[
GraphicsBox[{{{},
{GrayLevel[0], PointSize[0.009166666666666668], AbsoluteThickness[1.6],
Opacity[0.3], PointBox[CompressedData["
1:eJxF1As01OsWAPCZIvJ+N17TeIxHeQzHK9HeJM0pFUnktITodR00CaGOpLwK
R06XlNT1KMlVOTiVPItIR0xeMxnGM4QYRMql7przX+u//uu3vr339+291vdX
8w7Y67uKQCBcW35XvkSFsJcD6rKVBOaz0eGyQxVSpcpHxD5J8012Kxf8qUKK
74NT5TseK0nyHWpCjCeUivGdFmz3apezCN/FZTHCGRNCfDMXGrYPJwjyPWkl
EWOqs/qf/X9zehlVS+DbLUpXNKtqsYJff01RnOXCHN/N8WbC74yn+ZYih4lz
2sb4TtaKEZGj9/FN8NCRTGG0/uPKDMdVcJpvSuR/FtPrW4BgdWhak+UPyaV2
RNI0FyqVbtFNutMBP4VtpZFHgEL8mvSFlQ+T+38SjHg4AZ7VrIZ82RJIHlWZ
FNOZAsJWnkr72gqgWzO3WjOnAfuDG7zmasDihnG2wpoZsLDxpl5n1IFOYJFm
381ZCN0uR/2U0Ai4WW5qS8xncLDc/ctqrWYgkAqoEU3zkHXuVr+HQQsMj+rm
0n2/gFzZQT+GORMqhbfVMRe+Qf2+mOMmvDagN4HAhnAidmTsvCl+rA2KBx/w
Fjmr0C9suuWJMBMopzcL1uQLoEOIkrPk4luIXf1KPu70GiQNPeXGE5kQ+VFo
f4CNENbWM0X2rW+HUG/tYO88IYxO9ThnkNsJQe3211zEhTHLqfvN8XoWBDoc
KaGfEsZnEh7rc0beg1/VxbbNncIYfW6pkDLJAVpx96sU57VIdL6Y/9WwFxaP
HBYTuCqCn+WdqN4NXOA53nEY8RBFm7uq0rr0PsDurLk6fzF82mur9bqnF2j1
HPNCS3HsjaHtBEYP0KyXXG9niSOhTLO2JrYb3O4JvNBwk8DQU35xa4dZkIwF
se5vJTG2ppxnH9j5Y145UmjFNL2q48YGlbasojddUjgZ4/6zrSkHbiQXYb24
NLqG00/kd/QAaWdlcxVKo8lzz8scLS6kCTZ7Pj0ljTLEM4Vyp/tArpIzWZwr
jeNZ/WXSb/ohOWwisrBTGndMnCll6A2ClOmS1F0xGdRKGqgKuDgEYwRR6z5j
GSzMUGRbtQ+D31OlJravDCbVmW9TEhyBWB+DqtQcGbQPl6r+ojsKPjTLj383
yuBigpV2zoExsPOZneVtlsWPnk8u2F75CKl+WfJa6+RQKUk+z/HIOJDmpLym
38uhgf2Oe1eFPgJ9fPZBlKE8igY/YJRUj0Lt3TVbIrzl8Z3sfeLJtBFge8QF
WT+Xx5n4TUWNhz6AVYfp+LEv8qiQExTsoTIMz1K2nfM2UEDDvB2/0QyHwGKX
i8RBLwXcfo8Su8p2EMqEfDNdUhXQx/zeRLHuADwTzaSTd63D8y+MXI9K94Om
Wmuizvw6DD566oTZ2X7IZnHJ6nok7F18fSNwzwBQrk0VKh8ioU273MLDqEG4
sXz75FNI/HmpiMr8LfGChKLbS+L0Y4fBopha81JAEf2Puipwcj4AKdJogrhR
ETVDL4THvhuByDOO9NRRRfzj8HBN4OgoRKff4jCTlJAdezhv3mGE72o0CSjd
MwoC+/4b8KZaCXMuFJMj9D8AGpWa72QrIW3H3LVjmkMQKVGxVDejhCdFynjd
3CEgiRjnJpGVMS6x6IHzswFIrbUxi3NSRpW466dCBPpBbuV/Fa2MdGKq1mYX
LgR9/gqFVcqoxgs2ip/q4Rt/vnRf7SwHeI/Em/N4yqhHI4fEdLIh8FdVz9va
KhjhuySkwO6ESW39yevuKtjcs6le7lUb1NP0vDslVZEe8PjP2sNM6LmU4Bh0
WRWZfmNaMzfb4KBNRs+vFaqY7WR/cN61A9hf8gOPTqmi8C+bjieIs8Ct5AnB
i0rGoM5+5dyQ98AMbEh2dyMj2zX5TWXv8nkUu6Nl0sj42t8zTh56oXngQ9Gu
52QsmHvb9SSEC7FTFN3SwPXYoutT7M3og6yl+47J0hQs+2zF0SBy4VxjaUSj
OQUXNzJ8+x53892my/CQ6O6B60GNgRdCKOj4UdBlbwILupxaLQi/UzDNkbV8
gg4gGbIIZ/Mp/H7MOsZ5JiMUrHWOnnJfaIWItL0SEyQ1jDYLLFAxagXb5XaX
vNSQHe3U/+f2NoiabPptfaoa6hG1E79ldkJDkVF6Z7Ua0lobEivesEEkcZPX
frYajn3JG/Hy5MCduAIhsqA6zjg++RrC6gFCaOhtq7vq2HKzYkl/bS9EGMca
mbHUkZbjnxT5jQPPJJPnH/HUkRR0+yb14XtYGPt3laGEBjoIECTy77PAsuFW
XIG2BkZ3lT7ITO4EO2qv5hUXDeTVTPdfpbXDrFdpr3qQBro9D55362ECQ6Xu
pEqeBlpduSf0LaUFJCJHZpoUNbH+xKCFbX4zmEXDxSMxmkjKnxg5t7EF0r6O
fvu9VhPHipUPmWe8gztu+tcZU5qYXZhuV+XdAVxTU+8JUSqKDY3W/YvbBRRZ
6w1+VCo2N3R9XiP7Hjwn7aaGt1D5/Y/X7h6r9aAis49kmDndA2avKjz1z1NR
oVJZNeEAF9x9fWTY2VS8tDLewT7oWB905107FROgY3LD8n1Xv/wHT9tOC93M
tozuzBqARL37ShCvhSEilCh/Rj+IDT3JtyjXwowTxSEnFfsg5aKej5qoNqZy
BY11PXpgd0BYa4aHNvr8lSd9LbwLLMs/7AoI08bJ49EDmfYdIHag3lbhkTbW
MvZo6M0xoTh5pYAO6nlQrnIFW2BsObpVWRcdPq1KlzNsBk3RlYQN2CHcaH2l
6DVcWtmucwM2Z4eed4ivg5GV+IyNmBWu5PVXXhUso5unpYeRK5Qugdlc8/IP
TXr/X78NhO+PARK+54dUBH5PMOT7R30a38SV8Epjvn/km/D9P/aUciY=
"]]}, {{}, {}}}, {{},
{RGBColor[1, 0, 0], PointSize[0.009166666666666668], AbsoluteThickness[
1.6], Opacity[0.3], PointBox[CompressedData["
1:eJxF1Gs01PsaB/CZiCnEIA1yGQYzjG5Gua3zPHurzXE2daiQ3FrjbHJppXQI
HUccbJctNoewT8m2ZeeoaUdy0hSSiiI2Mm5jbu6s0Fbi6EX/efFbz/qs53nz
e9Z6vvRTZzxDNpFIpISN97lePHTzQnejFn/+ZIzpp/U5yJC46axkaPJd9is5
ly3MQVHa9D0jHyrhSmbOsW/MNQhH5AdODsjUCKf3lrMsUlUIV+2QhJ6nbyHc
4suqevxQifBoSYR02wlFwqThWvOTy2TCdih54Wm2/uiLY1si3Gb8PxC+7fru
WVrhEuH5l3EuJq/mCR8pJ2XFqcsIXzumr+lPHiJM6jhNy2lrlpsa/K7s3BMg
5v9euM71FkBZxKTb5tk5CLJpSk58IIVqjU3fVUZszEcuthSIZyFaxWuY6T4L
ReTPH1iAK07p/lqWM3DEq0DBm/IO9pxCUvfyFKCFVorptUV4nfZHeW7zJNhR
PVu2RCxBOH1NEtU4AcYn5rjtYe8h29G+hhwrgz1mXvvMvFag/fTdEjSRAn/R
2bdB6yNMpcwGvxkWwzNDpbTZXWuw40Jidu+YCFw7QNEynoxhzX4eBWsi4Fx/
mLKsqYAe8WwdL7IEirI+mbBfKWJbRjCjelECnKAtv17Zq4TFy2uuTwIkQDvv
J3BWVMaiWPoK10wM2hMXV/efVsajx1sHlXvHYf7KcfPDSEFfZZdNzSFC4HMP
fWVjsAUZU2X8GbMx6DmsJSVXbMVC1QDaa+1RkDmMZb22VMVcB8/v/3FsFPh2
0Wuh7Wo4caT2upWBENKvTVLv3tyGgb9dfmYXNg6K9yNLTW01sMlQ3bC/bhx8
/KyV9eM00F1J8MlXIATcWpCS/5sG3v/DacSULATO4puWuCQqijoyLtaeHIUe
YR/TLpuKq52Gifo3h8GphZPkrq2JTj22+UwfATA/r5OnibEJK/zI1QGg8XJT
2SItLC3kpJEa+oFCnRNv1tmOSZRbRh5dA+DUbzsb+nE7YpBsgWItgKTUn842
VOlghXtxFMNxGEIzGvfzbu3Aov+2s8qdRyDo3IcLRbE0TD9MefrvewI46m9f
f+mgLvLDdQtWU97C+TdSpxMhekjLVBCpBr8F/tTTtoPq+sisCKf9ojgECZeH
jRr99LHUISE9mTZCePAe4+EsbxQ4uduLGNt2Yv7Sxy4Zd5xw/bHctikVIUQI
nZJ+zN6JtzenV9vvEEMFhxuqqGaA18PrZ920JGDMzact/GyACxmT6w01ImA+
6rnb9cYA/aMsi59dGgenGO/JvN2GqPdtZ3z4LiGwOQN5eWiEWVt5auTWEXiu
sxqTRzJGma/TwA97R+FWTuvbEK4xWlV+3Ni4EGKxr7SpzBhZlS4Ub1sR6DRS
nzeJjFHi79z48qkYPP+5aWKaRcc/f9vxH4cDEoiy1BmqCKPjVP3w2bBZESz2
1VkWJNHReLt7t/fAOLCfWNvq19Hx16NmzcnJQuAFFut4rtGxPfXE15GBYyDs
5NakhJrgyFd9+q/SRmEnPatgUWpC7KP//o2Z0xxTdPyderk/fRyOn7ubyP3O
FB+VTkfazosgx98yfbLUFJ0NolgmkRLoLBda/5XEwFhBc/Lucil4tJaXcBIZ
2Lkc8sH4vQT+Vatb+YDHwKPVmVnhLzbuY+OaC7sZGD3IVzleJYKvXfau7Vln
oDTd5gktYhzyolWMUi3N8LI2rclRQwhXV18vHbhuhmweXWZWMQI/1md++AvD
HGldi6kzjUMQ9DmQ91lgpE+JaEAqhCpejmpPnAWKG8+oSG1EcPVlxBXJHQsM
pLjFlQaKQW+Ovd6+i4nj6S84GQIJ5BmerK1rY2KXD/mBcoYUVD0yA28EsVB3
quPnTiUZpCQ+UM9dYSEvxchUXCeDgCaxX1OqJU6y45uvvpiAQg21g7s2W+Fa
MXU/c2kSXp/isH9KscJvXI15IXrTwJ44LOsessIfigcPDXJmgBlwhvLUmY1f
8u/U7cJ522Y2rt2w9/793By8HWm9ZnLSGr/kqaf60hH1JWtcWKc72i7NwfM/
Mcir2bsIH4zyuiMz303M/68sObj30W6if1XSTwlm7yH63pfmg/pi5dbSoTS4
t8r9qsaI2kLdSzjz0IEwhwC5XYc8Ht+ullsx5m+6Fu/l5qteOlvmvI9wQkVB
u1au3PZONfTvBXIvbcQRiWVD+E64oOtCjNxRCousmcdyTz9UeCBZtEF6Lys6
YNs8NE24n7n4xhzdFjYVa+8ehenPLDFHV5/ZsBTxMOSlsrl0FQts/IVaGK83
Bv8HBnaaGg==
"]]}, {{}, {}}}, {{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJxF1gk0lAsbAOBRtmyhaMxoGstYypayZHvfpK4W0i4/LjL6K8UVJY2IXElq
8qurTCWpXEXqKv2V0J1SSggVM2albBlJZL/jds70nfOd7zznvMv3vud8i0FI
xEb6DAKBcE56Tl/ldOOedxjOqSy+eC4lakoCmmXkMLUvWjJTfMsVllRoyuw/
UL7mL9JsmWOXyp0glKnJnH3A46XXJhWZSx+kKudIlGRuGq35pTNdQeZ+F41U
O7OZP/snbHiexCbI7JtkrppbNV4hq69YkuY0Oixz/Ql75WbbrzJrUuLU+e96
ZWaapKrM9RTLTAg0m50Z1fjTlTk+MyBGZmri1fHzL94C266yt3NCml/mIUf8
KoK2oE0X4q9JAL/ErbChdENF8ddZGVf7oH/rEgXGHQmEerzvII32ArNHv1/N
bAACi1VSLtn3gKdr0wrXpq/gYVV/KIXVBY4s23xdxW9w9p57pUV8J5hFlhiL
Lw6BtRzJ1mH9J0DnuQNuqd9h78ST3Dz9j0Ag3qIxakfg143JzbftOqCzx/y6
J30MLj8s6uWFtUOl8srqptFJEMUt2vM9UgyetSC/8LAc8vTtGUcvi6H0Y9Hg
OH8GdlRfvp4c2w7UGGeFvwvl8eCdwTHRmg44PvOlTlqMIi4cZ/i7HW6HxM9K
WyOWK+GxooBZH0PEEBtieiDkhhLKjaQ1lbBEEP1+1bkt6sq4x/8vtoaiCCLX
hd333K+MXKW7dYkMIYRXpbxzblFG9ep7SUXyQrAp5b3M3DQL0/MblRUTBTAe
tkNN/n8qWJjnxLzP5sOgT9667kBVNB9LL2rYzQfk5Q5X71NDUUP9jp5lArB5
wXcodlLHgDfOD1bWSe06te1Krjp2ju/q4m0Vgu+f8s+MfDUwOfZxeNWEEJh4
67hfw2wcDCZ5brsl+rGva5qott1noFAgBP13uSVvWjWx7sNnLY6VEFjMEnyh
roWlCfv8v10VAHFtZX0VaqEkwydda4EAshXqgx7t10L2QS/7PWv5MLeS3196
XQs9DRU/PqfzgBknSSxu0UK/ZdoREafbQNNuSrNATRtjqDr6+a+50EtQdRXb
auPR1zpLC8hcCH9EquXStXHno90ulakcOB5qVZV1TRuf+Wp6nyFwINTG6XPd
K23cbLGYv5zRCh6hQ0ODznPw7Y5C66sTLZAVnqtjMm8u9pf4du4paAHisGbw
1zapKd5ZNUtawbNvqCjJWgcFzW9ytMpbgV2g6MYI0cEWnr3VM3cOcAPTol2f
6GBoqPww6z0HXD7Y9f13TAcLSbM4o4e58Dhz5ZEQK13UOav5tH+MC45eWzT8
g3XxyJemmLqkNnigRL+0JUsXrUjLvcYX8eCx6iVPitc8pIMkpFPAA2ODxlNm
I/OQsnvJxIfzPMjniCiGFkRMdT8YeGouD6jnBorJvxLR+PyX/3sHtAFL+vTp
ZBJl+9JX1a7TeEbE6wGh3V9WSPuX0v5+Lq+HUbsatu27xwFi4mKJ3CI9pJt3
/1FpwoHEQz6eWT166EVTHqbfbIVj5y/zm06T8LfqbVEtdI7MfKc/Fe9JWkF+
8+2IN09JeCTRb1dMPwdwcZnDWi4JUxymLnXLtUGiRsVU9TcSVq4eek2/wAWi
iu310xQyXi1hfya/bYMs9nL7tA1kvDcZvpXZxYO50++rY2TMzB+7clZdANHf
J6C4ioxNK/QKHM7/dIbAeTyeIoTBu+r1NwbJeM7OavRphRAi984PumKqj7FX
1QxsMkTQb2rZf8FPHwsYZmCWIIYXNhYhLbPn40PCNe/VW9tB8Hu6T/TJ+diw
V9ARkyEG/+U5gr0V81E4z3vSmiAG7lhh5M6B+bjUlB+g4CgC3/sPCcE0CtKt
T/1yMFsITZE1TD9fCu543rxJqCS9Hz3eMe1sCparv9T8dEgA9R1dJV5PKMjw
dKi7TxDA8QGqeVnkAiydfPppjRcfcqdu+jC1qHhuo2biAUsBHHlVxnjlQMWG
Q7VB7HVCmc1P1jXcvyKAC9GvIpMPUtFXUrvFUVcErRsaHQlnqCjkb+615YqA
aM0hxBdSZfPYf+gbXNpNxdvMcL3R+HZgZG/UkBANUEhj7bN83Q7u0nGngg0w
xzbOLrxQDEn9tQkLsgzQzPtEE/uSCGpKFp9veWqAFtkJznFPhaByalnwVq4B
DllIqPI0IeSl3VKiKBji5sMz4mvyBECIjb3iUmCIrGG9zaLTAmDYHl9szzFE
SRA95rCcEB7PZo7cHTTENZKLlXtOCGG0948qaw0jXNZ8l5WvLgKnmstpt0yN
MLx2U0tfngg8aELjjC1GmKdf6+YVIIah4DKhYbQRzlyvNSfGrB2i9Kt/079h
hA+SXXYNq3aARmL3t1o9YyR/1+eE8TvA/hikhKUaI6O9J6jdvgOyJ3omz7CN
0UX4ebyuQwx5vpYXogaM0Xv7EzfRuAhEdnYhElUaLtdRvPV8hQioc1wXhtNo
+HiSv+E/d4QQ1O8x0OlGk83fx/buZQfScKSBlvosWwD2LyuCLI/SsMLsPvm7
qgD86KHa3Hwa7rTaO8Cb4MGHBdF5ze9puGX+ZNBGCx4Ynjw7aOphgrdZ++3V
xW1wyuImCU6Y4LBpciAvlwdqnx4WOpaboNGGdM+2dD5kpliEGqia4jbn9Qk9
7wXgHRHXmBNoihdI5DtmQdL9lXd5RcSZYq7K9uZjCmJQ2/7CXfeuKd5Uc19g
TW2HUuZ0ATOkrGYdebiqA3ql0Y1kc4xpLOoKIn4EY9XphIV4j++XESP3CX6f
bteyEFfdqXeQxHRC93R8ziL80rs2tXpPN0jBGzSxwI0seeUk6fd66LpDeVet
Bb63PJvJ8pf+D/x7WCFzZDXbaEwCkf8mWMv8o76NzHLT4ZW2Mv/IXyrzP3aH
hRg=
"]]}}, {{}, {}}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"vx,np\"", TraditionalForm], None}, {
FormBox["\"x/\[Lambda]\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotLabel->FormBox["\"Fig11a\"", TraditionalForm],
PlotRange->{{-4.784079648210082, 20.}, {0, 1.3}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.886740626351656*^9, {3.8867406734400063`*^9, 3.8867407488330793`*^9},
3.886741240660334*^9, {3.886741293620846*^9, 3.886741301648291*^9}, {
3.88674134500392*^9, 3.8867414829713707`*^9}, {3.886741534562738*^9,
3.8867415612467318`*^9}, {3.886741630342449*^9, 3.886741658226715*^9},
3.886741696383376*^9, 3.886741821570835*^9, 3.886741867592997*^9,
3.8867419360955353`*^9, 3.88674196629069*^9},
CellLabel->"Out[70]=",ExpressionUUID->"12f85515-3279-426c-930d-9973b1a78201"],
Cell[BoxData[
GraphicsBox[{{{},
{GrayLevel[0], PointSize[0.007333333333333334], AbsoluteThickness[1.6],
Opacity[0.3], PointBox[CompressedData["
1:eJxF2As0lOv3OPDJ/W6MayJDY4xbUUIO7a1UKkmiKN9CKkWljkolIdWUilAp
QqeSJDnllktUxCkyyWUwmJtLKCIlVL/5r/Xvtdaz1qzPmud95p2197Of/b76
/gfcd4qRSKSAWSTS//tsVPLsWVesWkkipZzMtLIBDk3j3u4hCuFeu9aAKOqM
R9ySaSkeKoQnd3kL85lkwjKTVs63jikT1qEX1bB4ioQt3JesklijQNgpovS1
zRM5wl7ZDiuDtGUJB7ZUVKdFSxMOF1u2onFAknD8/KoqyY0ShO9uWem0pFSM
cPHZ2lfB82YRTt559Sxq/q7448ryG2fu900R7ldPi1EqniBM3v/P6cPMccK2
rzOjOV6jM9fbbxI/5/55Zv6nbbM8x/oI+97a/dsgiTfjFO4kb08LYdKE4NPU
plczntOz2+J6FhB+oHWL/KgBSMlXZt+4cgy421X7Ve5ygCRQ1UlvuA6sGn/p
iWdCwAQNr5Cv9yCvyrNAd+4gkDyKhpZlPgSvHzZOqv8bAd9Jv46DbU8gq/lK
e8LUF0Dlxl9vLpVAcZBTbwFpDDKMVsELbiWEWRw4d6BxDPB/a81d7KoAx28w
jO9+BVbC+jmtiTWgdVr509Ej40Capa8/b/lb8M3p1gt3/gbcRvmUyzXvROs/
do/U/g6+7ifkfhq+B/zX/d2DIZH99w4MjDZCvOMal/rYCSi2k1JbWdYEgYHJ
1dPxPyAw2jn79cUWoCoprTi0YBLI6zd3zKGxwW331iyW7jTIxGkw2pPagKnu
cv3J1C+QIbepBp1vAytr6ie9+ST0GnTYPe3KhqStSn9JHZuF/aSAqw+V2KD1
8+oCAzUxJF29lwtubRD8U5pxfrXIm4z6Lhe0Q3GJ/N7nEWIY6a28z/lXB7DL
D6r5FYrhhO4x0w05XdDfUDSWUi+GtXyHYQnfTqi89j7QZJE4+uidUVsqx4WM
arlgF6Y4MpnyvbYqPOif0+fvPyKO/dre9iG5PLBHykjhqDhKXBwLGvXmA5cZ
KOf7XRyd9jPefssTwNDN3I83lSQwhyX3iCUnAIWKXxnTf0tgZYPpxgVeQrDw
LcqSUJRE3w2tscZbeoCrFffS4LokBs8JSx6b7AGqeq93sYkUxpgX4seDQghZ
otKnYC6Fd9PcQoJ0e8C+aE1JiKMUWtTMz1qaKfo9juy7olgppP28lBIqKYAR
Gb+Om0VSGGinlVE7xQWyRaS2aZkUOj3KTLi/lg9myMwLHpLCjIhDeXGneYCj
pSZPtaSRNWrWMGrWDeTxx5zP2tLIOHHBpMWOC9x5UymKq6XROVRFqPiwE2h6
/2Wwt0tjnut0c8hcDti6Vd3enC26/vF9Q8mf7eBDHl667bk0xpef7qW0tYKb