-
Notifications
You must be signed in to change notification settings - Fork 0
/
PhysRevA.93.063801.nb
10185 lines (10121 loc) · 540 KB
/
PhysRevA.93.063801.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 553124, 10177]
NotebookOptionsPosition[ 548807, 10096]
NotebookOutlinePosition[ 549198, 10112]
CellTagsIndexPosition[ 549155, 10109]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[TextData[StyleBox["Temporal laser-pulse-shape effects in nonlinear \
Thomson scattering", "Title",
FontWeight->"Regular",
FontColor->RGBColor[
0.2964217593652247, 0.6292210269321736, 0.2727702754253452]]], "Text",
CellChangeTimes->{{3.822636147120782*^9, 3.822636149053595*^9}, {
3.822636240732341*^9, 3.82263625191656*^9}, {3.822637212068983*^9,
3.822637212721833*^9}, 3.822770593869432*^9, {3.826178767410568*^9,
3.826178778145874*^9}, {3.826179988252692*^9, 3.826179992414234*^9}, {
3.826184450410564*^9, 3.82618446511765*^9},
3.873102610690053*^9},ExpressionUUID->"df5282b3-e5cd-46d4-8caa-\
931867837996"],
Cell[TextData[StyleBox["V. Yu. Kharin, D. Seipt, and S. G. Rykovanov\n\
PHYSICAL REVIEW A 93, 063801 (2016)", "Section",
FontSize->24,
FontColor->GrayLevel[0]]], "Text",
CellChangeTimes->{{3.8226362283387003`*^9, 3.822636334723393*^9}, {
3.822637289419742*^9, 3.82263728942037*^9}, 3.822770598930826*^9, {
3.822770643828999*^9, 3.822770657888399*^9}, {3.8261787920025873`*^9,
3.826178797827198*^9}, {3.826178841817155*^9, 3.826178843064488*^9}, {
3.826184441235121*^9, 3.826184446117023*^9}, {3.8347603194294653`*^9,
3.834760363187861*^9}, {3.834764970095244*^9, 3.8347649713281403`*^9}, {
3.873102641713533*^9, 3.8731026420332108`*^9}},
FontSize->14,ExpressionUUID->"d2b1b2bf-adb7-498d-b2de-e4abc45c268e"],
Cell[TextData[{
StyleBox["Notebook: \[CapitalOAcute]scar Amaro, September 2022 @", "Section",
FontSize->24,
FontColor->GrayLevel[0]],
StyleBox[ButtonBox[" ",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://epp.ist.utl.pt/"], None},
ButtonNote->"http://epp.ist.utl.pt/"], "Section",
FontSize->24,
FontColor->GrayLevel[0]],
StyleBox[ButtonBox["GoLP-EPP",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://epp.ist.utl.pt/"], None},
ButtonNote->"http://epp.ist.utl.pt/"], "Section",
FontSize->24,
FontVariations->{"Underline"->True},
FontColor->GrayLevel[0]]
}], "Text",
CellChangeTimes->{{3.8226362283387003`*^9, 3.822636334723393*^9},
3.822636391632341*^9, {3.8226372468331547`*^9, 3.822637246833611*^9}, {
3.8261788451108313`*^9, 3.826178845735269*^9}, {3.834760298433559*^9,
3.834760300152108*^9}, {3.869650177398939*^9, 3.8696501809348793`*^9}, {
3.873102636168799*^9, 3.873102664064603*^9}},
FontSize->14,ExpressionUUID->"fb9ccfad-de98-4fae-8b0f-5619942fb0f1"],
Cell[CellGroupData[{
Cell["Figure 2", "Chapter",
CellChangeTimes->{{3.872990613197942*^9, 3.8729906145130653`*^9}, {
3.872991255442811*^9, 3.872991257626719*^9}, {3.87299136429104*^9,
3.872991370252056*^9}, {3.873104320760893*^9,
3.873104322044977*^9}},ExpressionUUID->"72d43d6e-7814-4bab-b842-\
cd64fef003b7"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Clear", "[",
RowBox[{
"\[Zeta]", ",", "\[Xi]", ",", "ALP", ",", "ACP", ",", "R", ",", "a", ",",
"a0", ",", "\[Tau]", ",", "\[Phi]", ",", "int"}],
"]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"R", "=", "1"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"a", "[", "\[Phi]_", "]"}], ":=",
RowBox[{"a0", " ",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
RowBox[{"\[Phi]", "^", "2"}]}], "/",
RowBox[{"\[Tau]", "^", "2"}]}], "]"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"a0", "=", "2"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Tau]", "=", "20"}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"the", " ", "integral", " ", "has", " ", "a", " ", "full", " ",
"analytical", " ", "solution"}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"int", "=",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"a0", " ",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
RowBox[{"\[Xi]", "^", "2"}]}], "/",
RowBox[{"\[Tau]", "^", "2"}]}], "]"}]}], ")"}], "^", "2"}], " ",
RowBox[{
RowBox[{"Cos", "[", "\[Xi]", "]"}], "^", "2"}]}], ",",
RowBox[{"{",
RowBox[{"\[Xi]", ",", "0", ",", "\[Phi]"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"eq", " ", "29", " ", "implicit", " ", "relation"}], ",", " ",
RowBox[{"solve", " ", "numerically"}]}], "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Phi]", "[", "\[Zeta]_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{"\[Phi]", "+", "int", "-", "\[Zeta]"}], ",",
RowBox[{"{",
RowBox[{"\[Phi]", ",", "0"}], "}"}]}], "]"}], "//", "Quiet"}],
")"}], "[",
RowBox[{"[",
RowBox[{"1", ",", "2"}], "]"}], "]"}], "//", "Re"}], "//", "Quiet"}]}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"eq", " ", "13"}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"ACP", "[", "\[Zeta]_", "]"}], ":=",
RowBox[{
FractionBox["1", "R"],
FractionBox[
RowBox[{"a", "[",
RowBox[{"\[Phi]", "[", "\[Zeta]", "]"}], "]"}],
RowBox[{"1", "+",
RowBox[{
RowBox[{"a", "[",
RowBox[{"\[Phi]", "[", "\[Zeta]", "]"}], "]"}], "^", "2", " "}]}]],
RowBox[{"Cos", "[",
RowBox[{"\[Phi]", "[", "\[Zeta]", "]"}], "]"}]}]}],
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"eq", " ", "28"}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"ALP", "[", "\[Zeta]_", "]"}], ":=",
RowBox[{
FractionBox["1", "R"],
FractionBox[
RowBox[{
RowBox[{"a", "[",
RowBox[{"\[Phi]", "[", "\[Zeta]", "]"}], "]"}],
RowBox[{"Cos", "[",
RowBox[{"\[Phi]", "[", "\[Zeta]", "]"}], "]"}]}],
RowBox[{"1", "+",
RowBox[{
RowBox[{
RowBox[{"a", "[",
RowBox[{"\[Phi]", "[", "\[Zeta]", "]"}], "]"}], "^", "2"}], " ",
RowBox[{
RowBox[{"Cos", "[",
RowBox[{"\[Phi]", "[", "\[Zeta]", "]"}], "]"}], "^", "2"}]}]}]]}]}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ", "lists", " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ACPlst", " ", "=", " ",
RowBox[{"ParallelTable", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Zeta]", ",",
RowBox[{"ACP", "[", "\[Zeta]", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Zeta]", ",",
RowBox[{"-", "110"}], ",",
RowBox[{"+", "110"}], ",", "0.2"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"ALPlst", " ", "=", " ",
RowBox[{"ParallelTable", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Zeta]", ",",
RowBox[{"ALP", "[", "\[Zeta]", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Zeta]", ",",
RowBox[{"-", "110"}], ",",
RowBox[{"+", "110"}], ",", "0.2"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ", "plots", " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{"ListPlot", "[",
RowBox[{"ACPlst", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"Axes", "->", "False"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<\[Zeta]\>\"", ",", "\"\<A[a.u.]\>\""}], "}"}]}], ",",
RowBox[{"PlotLabel", "\[Rule]", "\"\<(left) CP\>\""}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"ListPlot", "[",
RowBox[{"ALPlst", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"Axes", "->", "False"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<\[Zeta]\>\"", ",", "\"\<A[a.u.]\>\""}], "}"}]}], ",",
RowBox[{"PlotLabel", "\[Rule]", "\"\<(right) LP\>\""}]}], "]"}]}], "Input",\
CellChangeTimes->{{3.873104322942634*^9, 3.873104336160321*^9}, {
3.873104384044799*^9, 3.873104472813648*^9}, {3.87310450713715*^9,
3.8731047237379704`*^9}, {3.87310478442349*^9, 3.873104939119236*^9}, {
3.873105066390493*^9, 3.873105080945099*^9}, {3.873105121079142*^9,
3.873105123333654*^9}, {3.873105245604534*^9, 3.8731052848968363`*^9}},
CellLabel->
"In[477]:=",ExpressionUUID->"8531fc95-4d92-4e0e-9f6c-09474272c094"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.004583333333333334],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw9nHdczv33x+2MkJmyV1KR9tR12ruuPcqo+ybrxk2IiOxNVmRmk62S2XXs
IqF9JXVb2URk8+t7nfP59c9991DP69Xrvc/7nHfvvyZLRzdq0KBBaJMGDf73
X/1XYiRe+LP/XfLYkdl2//uKjcThN5u1PdQ7OjtG/xWJL77/XPq5Jjp7a0r9
lyYSf/Vpv2fm9+jsO3n1XyGR6As30mebRGfreRCJK+NfB60cPoJ4dpHY1CXH
YqqfmnhmkVjumlHw63A48UwicWO1p8lHK3viGUaibuuv8QuKRR4kMBJrmmyO
Nn6h9NDjaiNw+oroa21O/e2h51VH4KvZNvNOjf3HQ8/TRWDhUuVfQbumeuh5
eREY2vjN3cGPZxAPI7Dq7wfpPbLjiZcegRLvdfnD3iUQ70AEfq/Os5nUKZF4
KRFY96VtxOlNicRbFYGPcMW/uxWJxEuMwI2DP6yZMnEu8WLreU5/nDp4xhMv
JgKHbW50qV2zacTTRODuN0Nbqf8eQ7yQCIx8sbF7L0sH4kEEjmr8dvrx4tHs
XwS+bjxxQ+35mexfBB6rjtrXumwh+xeBmnZp1at3rGT/InD/gHkZlkfWUXs0
iMCvqde6i8I2Ea9Wg9Ksq07B87YQr1qDNjHtGt1ouI14Og1atJsVeGXzduLl
afDqBgP5gyY7iIcaTE1KC1/ebjvx0jX40m93k2trUoh3QIMZFjVV9zSbiJei
wa+dp5f1wTXEW6XBf96EfU1cMZd4iRrccvnExIwxw9g/Dd56vttstmw5+6dB
j3kJo2ee38L+afB4XI+qnjl72D8N/osV7wtlh9k/DW7tmrIFTp8gnp0G55ad
2/nP9dPEM9PgZJudM056ZBLPRIPPSn/Kr7TPIp5hvT/WWcN3tT3L/U+DwV8f
ff3U9Cz3PzVOHu8Y9f72Ge5/akzJ91pgBxnc/9R4K9Ri1NOQk9z/1Ljb8Wzf
7sX7uf+pMUjyep7HyiTuf2r8c6y5duuEteyfGj95nnN7a57G/qnx/POarXda
ZrF/alzb4/eVm+eQ/VNjbnDdwrvvrvP4VaNS/KRZxye3ePyq8dBYTZZN2N1s
ag41Vm/dHX9oyv1svbwQNcpiTV71TSvg8atG06mj7++1KOT+p8ZYjafx3HsF
3P/UeNvy7II5c+8Tz0SNO27eTfX3yCeeoRorSkvf/xd6k/ufGrNWh8cd0Vzk
/qfC3TLNoL7azdz/VHgkbzmutczw0PN0KowJWrjmQ2qOh56Xp8KWBrc//+pc
xP6p8HrFkWed21Wwfyr87iU9e+TDIx6/KryqzTim3PCMeCkqLFNssK7IfEG8
VSp8puq5YlHP1zx+VViZam9jsvkN9z8VbmrcI/969Rvufyr8eeVHqUvVa+Jp
VOh2ztr7TcRL4oWoUH54sHaY5zPufyp033/7rKRjFfc/FX6dlTd67bx73P9U
+Li1TW1p0lr2T4XNBxn9W1FbxP6p8ISN6eL2Mc/YPxWOOnxn39TJNeyfEmOm
HDpwx6GO/VNir+atDA/hD+LplJgTFNIkP7qBlvxT4lLjXblN4xppyT8lyur+
M3b50lhL/ilxye/Z/btdaKIl/5T4WLH916edTbTknxJfVH74WLSoMfFWKTFS
ZKcuUzYkXqISb31x8N7T/if3PyVmnFZen+NSy/1PiUe+RNtcS/iP+58SC9UD
erZdUcD+1esdencaGtWyf0q87XywWBHYUET+KbGzxcE/VwJaiMg/Jd5v3eFT
m81GIvJPid237lthHNxRRP4pccyYSTPsVhqLyL/6v2+08ta8XqbEq1Xgb3Vu
5MuirsSrVuBVU+dhVdO7EU+nwK4/Oix3KO1KvDwFqkznqruUmBAPFVi2ZX9+
TWRn4qUrMKGVX8P20e2Id0CB44tbdDWqbEq8FAX+7Po5+Vd77i+rFHhG7RzX
WPKFx68Cl4R71Rwc2ZbaI1aB7a+2m7PL2JTaI0aBA9KWH48V96H20Ciw+8UJ
bcvHDtDS/KfAZ2bdPivbW1F7gAKzkmMfzWs8hHh2Clxz/M6SwEQb7Ri9fwo0
Nvn9+b/htlqa/xS4d1qBfVWCLfEMFbj/n/wfn2/YEK+BAm+q/h1+zYx5tXLU
qq4/7j3AknjVcox52aTPnq79iKeT48p/FhxPWtyZeHlyPKMpa3pmq47XDzne
e2WtjP3Wif2TY/SSqR/XZQ0Q6XkH5OjXuVrSfrqtiOY/OQ7vbzAzoLGLiOY/
OQY2Mq6Z6CSi9kiU447RB4ZsG+FFvFg5Gqa7RFvt8iFejBxzfszzsbbzI55G
jt5ZS03H1voRL0SOvvaD029f8iMeyLHzvaNZ6XG+3P/k+DrHJ/dHW2/imckx
7+N1q5KGIuKZ1OuNbztx614H4hnKcV/4/Ykzovpx/5PjXqOGl6UJzdk/GZrP
1o25ncntUS1Dl7E9S67vAvZPhuJX486MXxbA/slwVK9Gs7r3EPP4lWHnJ3Ze
CcdkPH5leCjS2NYOlcQ7IMNFIYbf7PppiJciw4SbVu5VhyOIt0qG7Z9aFMwy
i+TxK8N9D17kpc+I4P4nw2rnVqLu89XEi5HhzSW/w8c7K4inkaHxfF+jmB1i
7n8yTI56kvw80Zf7nwzX7z2+onHHwdz/ZDj76DOHB2lD2D8ZtnGtueO+IpD9
k+HD/SmFmy4o2D8ZbnnayLjtyRHsnwxjOnk8gh1/8/iVYuTObm7SGWN4/Eqx
8eajyRZHxhNPJ8Wu2dKvfk0nEi9PisPMe2YOk07i8StFc5/OT7uMmcT9T4oL
3XKmlfSeyONXiinLy84PnMi8FCl6Pdtf0MMrhvufFF+5tQtunhbF/U+KK9rW
+cbPk3H/k2KjiLCByxpZEi9Givk9R5tnGoeyf1JsdrGxy7uCKPZPih/Ekrgx
W8azf1K0bBR0+G2nqeyfFO3Gfhhmv3oGzQdmUjxVceq/LTPiaT4wqf97a7ec
td6cwONXio5ueZrgrHk8fqVodHm0R5o0kfufBEfuWPBc3C2ReNUSnLK96MYg
+Vzi6SS48HHcTYOX8dz/JJjfoXf88K/Tuf9JcL82uOjTwMnc/yTY1ayJLj5p
JK8fElx6o9Hec6FWPP9JcNzbXhPh1Sj2T4I9/uy4JY2fxv5JsHODzDMFK+ay
fxIc87Dv632mi9g/Cbp9Ue52mr+MeBoJ1l03+vLOfRWPXwmWHB/fJb3DWh6/
Ety7LfXwwLFJPH4lmKX+uOnoniRePyR449HmWY8GJPH6IcHtqh0LFutWc/+T
YM7F+eKMB8u5/0lQfaJRpHXUIu5/Yoxu8Uw9uels7n9i7JHY8p7T9dG8fogx
6smihk93D2P/xDjVYIFr/9nx7J8Yq12PGxtaLWX/xHht1JgxD+OT2D8xave3
MUvtuInXXzHeSLI/3W9gCo9fMT5SvtrrOW87j18xZthI3Sc82snjV4y5dUFR
VkapvH6IUad1nnW7ZSqvH2L8nJBX9Xb/Tu5/Yvwun3878eo27n/i+vH6E9ZM
3sz9T4yONpqEjAvruP+JceX3v1Y5b1rM/U+M23f0MY2aF8P9T4wb/qxbNuxK
HPsnxiFPo89tDFzDfoVjVNMRq+5N2sLrazjK1deTPTNSeTyGo2F45ZOrhfu4
/4TjotBel19EHeL+Eo5dK7TjzQce4f4RjpPmXHLN+32UeCHhuPRpyvf+F45x
+4ejYy9/l51wjNs7HAc9XjBs3ZwjrC8co799H1k79hDrC8MDJrPvHmm9j/WF
4Ywpn0b1bLyD9YWhdds0uf+RtawvDCP3dM8ZeTyc9YWhv7bnQdvfq9n/MIwv
fHfUccEu2j+FhKHjSu2yqe8Oam31wDCMOVX+NvzICfYzDNcfcfOZFpqu/aP/
CsXHXqlz2tqe4fEaiiObbfA/FXGW93eheNHa+K+m+84RLz0UXXJeNkj5cI77
TyiaOCzu2c36HPHmhdaflgL/Wi/JYn2h6PRHN3epOoP1heLVTxdb+4SfZH2h
+CU/O/rctgOsLxTrVn1093i+ifWF4LyB2yZu8ZvM/oXgBi/VvDqPXexfCP4+
8mhC+txjItIXgh4ji+Ymzslk/0Jw6grJ1WbnL4hIXwi2WZ0bN3gzcvuG4OLJ
8yJm3r7C7RuCVRMKd9oOv0Y8uxDc/73iXZX9dW7fEFz38njfOXCdeH+C8fSX
1aiNvcb6grGzyOzzvhzm5QXjnUSz+BGArC8YUwp7yNfmnmN9wZg9xOCWxcZT
rC8YPcfZWn6CVNYXjKbtuhh+vj2f/QtG1ZpkzQmTNPYvGAdVdK+WVmWxf8E4
wdgy9ZPJZfYvCNdoVp85e+s6t28Qpp/ufd7ubi63bxDuUZ1eavU7j9s3CAv/
HN960ukut28Q3qgb5l1oc4/bNwi7dRzXuq3zPW7fIDyT8UvWXXyX9QVhjmSQ
88wfzLMLwpfadbv7/JvL+oIwa87ZaUGZ11hfIDbr/T5OjpdYXyBurTPfb213
kvUF4rQV33YucZ3G+gIxId9vRu7Vo+xfID6965Ln++US+xeIxlX2kqRhN9i/
QBw965Ph0wZ3uH0D8b7uRLMbivvcvoH4anXemxFbC7l9AzFyn+5irFcxt28A
yhXBwa7+Jdy+ARgR6XPVbV8Jt28ATuj32S1OUcLtG4DrPgd8Ga4sZn0B+HT9
1jmZuwtZXwC67fTsnmp7n/UFYNyXbxNOtcljfQHoIyu5sSfkGs8vAfjfnchm
+5LPsL4A/BKW4BYXsITnlwCssDFZVqQ9xf754+7SGcl/Pb3C64M/rq7a3+pd
tzxeD/zxmjM0ONapgNvXH+PemcZV/1vM870/fvCZ2TvKtIzb1x8Hu1h8Ce5U
zvO5PyafX/ZYN+YBz9/+qLyrVZ43ruD29UfblV2/BJpX8P7AH9/6Hu66J+UB
6/ND03CvXiZjmZfnh29Keg82XFXG+vzQLaI0qt/3Ytbnh3m7E16X7itgfX54
wvRSyO2Gd1ifHw5x7Rk2vudV1ueHe74//aBafoL1+aHma+MdmqhU9s8PtccL
q07e17J/fjjhVP8euqxb3L6+2CurV83MJgXcvr5Y+d0/dmNlMc/PvmgeMCrY
8HMZt68vnrudabsk8gHPz7747FHI5JT+D7l9fdG7RXarhX9Xcvv64qagho4j
eldx+/ri5Jan17mOqWJ9vui7MKTxMJcq1ueLC7Ynfxy+pZL1+eC6c6EPesx/
yPp8sPfmZclj3zxgfT44zmDoXEW+jvX54AXFxicbO5WyPh88o1vx0PxIIevz
wdDFS/ZJX+azPh8cuWWj84hLQv/zwcwPbfbee3qK9fng+K/rj/39fge3rw9e
nj97uENr5Pb1xiZDt1hkPL3F49cbW1Q+m6Ktuc/t642e2ZbjuicJ7euNb5yX
Z96cWsbt640Nq071+HSunNvXG4utb2XaJlbw/OKN7k4bfCbrHnL7eqNxiVu2
XVEl9z9v/CyOiX8SX8X6vLHVrnMLDhdVsT4vHPr+4ijT6irW54Uip7yXyaeq
WJ8XjjS5eCreqYr1eWHAz3c3us6oZH1e6FmYNidl3EPW54X9h5hbT2kl6PPC
znXof0NSzvq8cMTvjcmeg8v4POyF29v9Dpy0isdbAy9M+0/c8nJ4AZ/XPLH1
naJhpfvzeHx44uiJvSzyq65o7fX6PNG3hdPPpzbH+PzliQ0MWvacfmEft68n
Pn+24nzUQ+TzqSf6pIqvL0m9xftZTzyU8Gj9Afv7Ij3PzhObGTbXWQQV8XnJ
E1vauqfnaku4/3ni5puZHZzPlRGvGvBpSA08Dy/n8w+g8chuLco3PSBeOuAD
o5Ez32+u4PMNYKekdI9pIx+yPsD7rje3WdQ+ZH2Ay/44V9epKlkf4AbZDal4
XSXrAyzxm/Ri+e5K1ge4/cKU83+WV7I+wAtOf8ZbB1eK8vV6RHjzuny+9ulD
/nwRltVJ/p2hED5PhMOWqfb03FbBfBGOmDauQnP6gaihnifC7Hv5v3yTy5nn
gW+tjgc1Ax3zPDB0jWXr2v2lzPPA364TM5Tni5nngd3CHY+OG1fIPA+sW9fJ
TJR8j3lD8Xj4L1enwbeYNxTbJvv0njnpMvOGYoLo9FvLyjTmDcWT/jdjJ3ns
0xJvKFo2e/GizyGtlnjuuLL/hIiQWTncH9zRYPbQpl9s7/L52h0Nx1ZsaSYq
oP5j546ZPRbAjhFF3P/cserA4OrrJiXMc8PNuuTHBktLmeeGJkVlieWZZcxz
w9X7Ng8yO6Vjnhs6rl128U5iOfPc8MS1Pb57LB4wzxX7vx/z5dfpB8xzxWXV
XXXm3SuY54pWXUU3tk2oYJ4rrn05ddugVGH9cEXr5Qk5NhcrmOeCXkmeR1dh
BfNcML9k7hg8JvBcsGVaxpnahQLPBf9ycdxW6yXwXLDGdut361eCPme8dOwt
np4p6HPGuqt7hxu9LWeeMx6dentOuG8585wxrcR0zLW5OuY5o3/DQW3LN5Xx
eHXCvVW/s7IXC/454aXohXcf+5fwfOFUv3/wMLMsLOL5wQlX+ZUd3mlayDwn
HLl8YDfLVveZ54iPjqmna9veYZ4jNkmr0yzLucE8Rzxu5Fj6Yekl5jnipYSZ
j6bf2sM8RzR87LI41eUwj1cHTM1bODz2lpb7nwM++XOyyjz0Jq8HDjg74XpU
+q88nv8dUHbHYlrypXs83hywaPzxm2FrC5hnjwlruhWNNeL5I8Ue/WcmLZgm
K2aePT63tf7TYnQJ8+zx3VKzvk3CeD1qYI/L+tX8utOxjHl2uL3DipVW2WXM
s8O/j8vMLoXqmGeHBUP7x/nf0DHPDtdbDuv+aWA58+ww3+KIwdR4YX6yxTYv
1sYanStnni2mOT4Yer+6nHm2uMe1ZeH0Jrx+2tmiOtnCZVl7Xs8b2GLbn3P6
R7d7wDwb3JekzbRs+IB5Nph1+lO/548Eng22Kd65Oya9nHk26OwxXBQ+XdBn
g2291tzrMEDQNwQL1p/xeHdTmF+GoNes8JPFSuHvHYIb596I/regjHlDcFrX
D9P/OJcxbwhq17X+7bmslNd7a5zc+Of1oEuC39bY0nBAgmdRMX/eYLQP7D2/
UU4R8wfjoPy4TUvWFTJvMJ5JGDfrhVkB8wahj9Gw51mz7jFvEHZ80Mvuz3Pe
r+ZZYWeVabuPz4T+Y4XHNw5eKZl7mXlWeCoWPs8SnWaeJXo2CUrJTpvP/dUS
A3Idp2z6lsnrsQWqtLeGx2Zf4f5tgZFFR/s6bs3h/myBB5+FXi00v8Pr80C8
7zM36ci4e8wbiBV/921t+/Y+88yxfU2jz8PtCplnjg/f3KrcGSjMf+bYvZfr
STuXYu0WPW8ABlqs35bZvITPLwMwN3ljze+LJdrbep4Zbm+c+ShLU6odreeZ
4cqU17dOPCrV/tZv8Pvj+wNFucaqMub1x9UddqnTLpQxrz92sXqefcNIx7x+
+NOiLG6RSse8flgcf6TH5SQd8/pijr1qscUlHfP6YvBnNwO/hzrm9cVHsY/z
pn8QeH1w0r2XM39+E3h9UPMjddWfOoHXGyd8z81Y9kLg9cbT8wuMl+QLvN74
Yv6PtNxDAq8Xdvt4PdEgTuD1QiePz28LnHXan3peT3xisCVg69sy7RD97/fE
KNPcR6kby7R/63++B347MOhwnVWZNln/ed0xK6ls5z+ZpdpcPb9b/fk889oi
q1LmdcWSxqZLI5NKmNcVFwS5RS2tLGaeKU6vWj3uZYdi5png67PfqkZbFTGv
C/bqIb8zrU8h84xRMuha+cR395lnjANU2fdUi+8xrzNOiZ04Z9uxO8zrhNmW
bx1gfS7zOmLzzeN27Bx1jXkdMO5rxl+t3C8wrwMuWKf1Xliwh3nt0VM75bzN
qf0i4rXDV8XwobX/RRHxjHBu+/ZJy85cE33V89pixLjOfXqczxVF6X+/DXZ6
cGhr0/Q7omv6nzdE5Ta/vXPrx5+V/vNaYZdZdkO+Fd8XbdTzW+DCIYfmP/td
wDwDdIw7fu7T70LmNcPB38QNUh8WMa8Jpu86uT08tZh5jdEtv2FOi+ASUZKe
1xCdxt99UPlfiaiGDsDatrsTHw0eVSpC/e//1PY62jK/tKRUtEz/89+0sGZk
d4VrmUit/7w67amOLh+L15aJeun5tdo6B/uqkLIy0X963Hvtuk1d5LM76kSJ
+t9/qd2zYmXdNx+dyEj/80+0odbZlzzG60RR+n/XaTPPG0TvXqQTNdB/n6ud
Nq1m1oiNOp5fatxp3qz/Xv8/uaL//3cK2Isy+PdjiC8KYf4d+nzRbv58U+KJ
1rK+UNIvqmX9ifT3iY7x35dBf7/Inf/+5+SPqBv705o3qM3ZvwPkLwxhf4H8
Bzv2v5zaB45w+0yj9gMzbj/iNQcLbt+D1P4wndufeK3AgPsH8QzBh/sP8drA
83LqX830PCPow/2viPonmHP/TKX+C07cfydS/waLS9S/Xan/g8MG6v8Gel5H
EH+j8UG8jjCCxw/xOkFDKxpfxOsMe3j8Ec8YhvL4JF4XGMXjl3hdwJbHN/FM
4CuPf+KZQiLPD8TrCit5/iBeN3jI8wvxusEcnn+I1x0u8vxEvB7wh+cv4vWE
UTy/NdHzesFznv/G0/wIrjw/3qP5E3rw/OlE8yu84vl1B82/kMHzb2M9rw/8
w/Mz8fpABM/fxOsDwvxOvL4gzP/E6wtBvD6Qvn5wg9cP4vWDAl5fiNcPvvH6
Q7z+0InXJ+L1h6W8fhHPDF7w+kY8M1jE6x/xzGALr4/EGwCXef0k3gBw4fWV
eObQiddf4pmDsD4Tzxya8/rtTOs7XOX1fSet/3CZ1/+mtD+Aebw/mED7B2jF
+4cC2l/Ai2zaXxDPEh7n0P6DeJZw4Fegfn9CPCvYPo32L8Szgo6baH9DPCtY
w/sf4g2C0bw/It4gUPP+iXiD4Qbvr4g3GID3X8QbDEN5f0Y8azDh/RvxrGEG
7+8ox24I5PL+z5H2hzCH94fjaP8I23n/uJ32lxDI+8u7tP+EIt5/Es8GjHh/
Sjyb+v5M+1fi2UA73t8SzwbO8v6XeDZwkPfHxLMFYf9MPFtQ8f6aeLaQyvtv
4tnCYd6fE88WDHn/Tjw7uM37e+LZQRLv/4lnB7l8PiCeHUTy+YF4dpDC5wvi
2UMinz+IZw8P+XxCPHso5fML8ezBi8831D/tIYbPP8RzgOt8PiKeAzjz+Yl4
DhDK5yviOUA2n7+I5wAZt+l8RjxHiKui8xvxHOHgfDrfEc8RatvR+Y94jvAP
nw+J5wgWx+n8SDwnmMDnS+I5wRE+fxLPCWby+ZR4TiCcX4nnBBl8viWeM4Tz
+Zd4zpDF52Pi1X/P52fiOcN3Pl8Tzxku8/mb5j8X+Mrnc+K5wGg+v9P84AKt
+XxP84kLFPL5n3guIMQHiOcKgzh+QDxXWMHxBeK5wgCOPxDPFeZzfIJ4rtCP
4xfEc4MjHN8gnhv05/gH8dwgkeMjxHODhhw/IZ4bLOX4CvHc4Q7HX4jnDkJ8
hnjuIMRviOcOU+IpvkM8d3Dj+A/xhsLoJhQfIt5QKPWl+BHxhsJdT4ovEW8o
XOD4E/GGwlOOTxHPAwaup/gV8TwAOL5FvPp/d6P4F/E8YDzHx4jnAUL8jHgi
yOf4GvFEoOL4G/FEIMTniCeCSo7fEU8Etzi+R/0PQMvxv220HYCdHB90oOkB
Sjl+qI/3hACs4/jiWP3nASzi+KOelwhwi+OTel4KQDOOX+p56QD3OL5J8SOA
Jhz/1POqAd5yfJT0ecI4jp+SPk94bUPxVdLnCTWtKP5K+jxhPsdnSZ8nFO+i
+C3p84ROHN8lfZ7QsQnFf0mfJ1xsSfFh0ucJWo4fkz5PGMjxZdLnBfc5/kz6
vAA5Pk36vGAFx69Jnxe4cXyb9HmBFce/9bhELxDi47Qv9wI1x8/1uHQvEOLr
FI+o/3mOv+tx1V4gxOdp++wNQvye4r/e8I7j+zT9e4MQ/6f4sTcM4fsBPS/G
G4T7A9LnDcL9Aunzhqt8/0D6vEG4nyB93lDzkO4vSJ83CPcbpM8HhPsP0ucD
wv0I6fMB4f6E9PnAdr5fIX0+INy/kD4fEO5nSJ8PPOP7G9LnA8L9DunzAWu+
/yF9PiDcD5E+XxDuj0ifLwTy/RLp8wXh/on0+cJ6vp8ifb4g3F+RPl8Q7rdI
ny9s4/sv0ucLwv0Y6fOFHL4/I32+INyvkT4/EO7fSJ8f3D9G93Okzw+E+zu+
3wPhfo/0+YFw/0f6/EC4HyR9fvCV7w9Jnx8I94t8/wjC/SPp8wPhfpL0+YNw
f0n6/MGB7zdJnz8I9598PwrC/Sjp8wfh/pT0+YNwv0r6/EHG96+kzx+E+1m+
vwXh/pb0+YNwv0v6AkC4/yV9AaBS0P0w6QsA4f6Y9AXAdr5fJn0BINw/k74A
GMT307ReB0DPDXR/rZ+v0wMgh++3aT8VAPF8/61f76sDQMP34zS/BALw/bme
ZxIIlny/TvN/IOzk+3c9LyQQ5vD9PO0fAuHhTLq/p/kvEKIq6X6f9AVC23y6
/yd9gbA6l/IDSF8gnN1B+QOkLxACv1J+AekLgqC+lH9A+oIgIoHyE0hfEMxH
yl8gfUEwQEr5DaQvCN5z/gPpC4I+nB9B+oLgCudPkL4gWMf5FaQvCEI5/4L0
BYEn52eQvmBowvkbpC8YijpTfgfpC4Z55ZT/QfqC4cZKyg8hfcFgakD5I6Qv
GFImUH4J6QuG2zaUf0L66r8vovwU0hcMZvMpf4X0BYOK81tIXwjc5/wX0hcC
Ozg/hvSFwAbOnyF9IXCR82tIXwiEcv4N6QuBy6soP4f01f/8csrfIX0hMGsE
5feQvhAYlkb5P6QvBKQiyg8ifaFg2Jzyh0hfKOjWUn4R6QuFo/co/4j0hULI
Z8pPIn2hsIvzl0hfKAysofwm0hcK3pz/RPpCwZfzo0hfKOzm/CnSFwoDOL+K
9IXBRs6/In1hYMP5WaQvDOAk5W+RvjDwXkH5XaQvDJbep/wv0hcG5y5Sfhjp
q//3Csofo/vZMAg0ovwy2h+EwdiplH9G97thoOP8NLpvDIdlnL9G80s4BHJ+
G92HhYMn57/R/iAcFnF+HN2fhUM058/peYnh0IDz62j+C4dRnH9H+sLhWRjl
55G+cPitovw90hcOTTm/j+Y/MQj5f5wfCEJ+IOkVw8M9lD9I+cFiyPxB+YWk
XwwZnH9I20kxCPmJnL8IQv4i5deKoc9cym+kv08Mjzj/Uc+LFcM1zo+k+fR/
fMqf5PxKEPIr6e8Xw1zOv6T8ajGM4/xM8kMMMZy/qeehGIT8Ts7/BCH/k8Kd
YljwkPJDyS8x3F1A+aN6Xq0YklpSfin5JwEh/5TzU0HITyX/JPAf56+SfxIo
5vxW8k8CFzj/lfyTgJAfy/mzIOTPkn8SyOL8WvJPAm/qKP+W/JOAAefnkn8S
EPJ3Ob8XhPxe8k8CT15T/i/5J4HYE5QfTP5J4Jg55Q+TfxIQ8os5/xiE/GPy
TwKFnJ9M/klgH+cvk38SGMf5zeSfFIT8Z86PBiE/mvyTwpuPlD9N/klhHOdX
k39SqBxD+dfknxSE/GzO3wYhf5vzu0HI76b9txR+mFD+t36/HiuFiZMpP5zm
Ayk8bkf54/rxtEoKY90pv5zOD1LYy/nnet4BKfRZQfnpdJ6Qwm3OX9fzUArA
+e00PqUQxvnvep5OCr8uUX48nTekkJJM+fN6Xq0UCndQfj3NfzLI7kj593qe
oQyeP6H8fDqPyGAg5+/reWYyOOpM+f10PpFB8EHK/9fzQAafjlJ9AM1HMtgS
TfUDep5GBvO5voD8k0GXpVR/QP7JQOlC9QnknwyKuX6B/JNBZ65vIP9kMJ7r
H8g/GYzi+gjyTwbOXD9B/slgzWOqryD/ZNCV6y/IPxmcfEn1GeRfvf4xVL9B
/skgZybVd5B/cjD900Bf/0H+yWGdhOpDyD85tJlN9SPknxwm1lJ9Cfknh79y
qf6E/JNDFNenkH9yUHH9CvknB3eubyH/5JDB9S/knxyunqb6GPJPDkO5fob8
k8PNhlRfQ/7Joaof1d+Qf3K43onqc8g/OUgXUf0O+SeHX9VU30P+yeHYdKr/
If/k0GwS1QeRf3Jo8Yrqh8g/ORxXU30R+aeA3mqqPyL/FIBcn0T+KeAo1y+R
fwow4Pom8k8Bcq5/Iv8UEMf1UeSfAjZw/RT5p4C/LlB9FfmngBGHqf6K5j8F
OF2h+ixaLxVQHUr1W+SfAvKkVN9F858CXHpT/RfNfwpYXUL1YTT/KeAT14/p
eagAmxSqLyP/FHCN689o/lOAO9en0fyngItcv0bznwLecX0b7Q+UEM31b+Sf
EqpjqD6O5j8lVKRQ/RzNf0qYx/V1NP8pYcpAqr/T80AJtlyfR/4pYbIb1e/R
/KeE1XKq76P1QwlLv1H9H/mnhPnpVB9I/ikh6ivVD5J/SrjN9YXknxKaVlH9
IfmnhDquTyT/lLCY6xfJPyU4c30j+acET65/JP+UsIbrI8k/JZw2oPpJ8k8J
Nf9SfSX5p4K6Q1R/Sf6p4IM11WeSfyqYYEn1m+SfCp5VDtHXd5J/KnCeTfWf
5J8KQg9QfSj5p4IOaVQ/Sv6pYBbXl5J/Kuh+lepPyT8VHOT6VPJPBTlcv0r+
qWAH17eSf/Xfc/0r+aeC2VwfS/6p4CjXz5J/KujP9bXknwoKm1L9LfmnAs9A
qs8l/1Qw7xbV75J/KnCPpPpe8k8NoWup/pf8U4OZjuqDyT81GOVQ/TD5p4Zq
ri8m/9SwmuuPyT81GHN9MvmnBieuXyb/1HCJ65vJPzWM5vpn8k8Njbk+mvYv
ahDqp7m+GoT6aq6/BqH+Wo87oAahPpviAWoQ6rdp/6IGob6b679BqP/m+nAQ
6sMpXqAGoX5cz6tVg1BfTvsXDQj151yfDkJ9Otevg1C/rueZaUCob6f4ggaE
+nfav2hAqI/n+nkQ6ue5vh6E+nqKP2hAqL/X42I1INTnk38aEOr3ub4fhPp+
rv8Hof6f/NOA8D4A+acB4f0A8k8DwvsC/P4ACO8P8PsEILxPQP5pQHi/gPyr
94ffNyD/IkB4/4DfRwDhfQR+PwGE9xPIvwgQ3lcg/yJAeH+B/IsA4X0Gfr8B
hPcb+H0HEN53IP8iQHj/gfyLAOF9CPIvAoT3I/h9CRDel+D3J0B4f4L8iwDh
fQryr57H71eQfxEgvG/B71+A8P4Fv48BwvsY5F8ECO9nkH8RILyvQf5FgvD+
Br/PAcL7HPx+Bwjvd5B/kSC870H+RYLw/gf5FwnC+yD8fggI74fw+yIgvC9C
/kWC8P4I+RcJwvsk5F8kCO+X/B/DZE16
"]]}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"A[a.u.]\"", TraditionalForm], None}, {
FormBox["\"\[Zeta]\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotLabel->FormBox["\"(left) CP\"", TraditionalForm],
PlotRange->{{-110., 110.}, {-0.4984193786401539, 0.4906755850608197}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.873104640022738*^9, 3.873104730445936*^9}, {
3.8731047906328907`*^9, 3.873104812738411*^9}, 3.873104847382846*^9, {
3.873104881189378*^9, 3.8731049160626993`*^9}, {3.873105076486533*^9,
3.873105082199766*^9}, 3.873105124531505*^9, 3.873105296666418*^9},
CellLabel->
"Out[488]=",ExpressionUUID->"a07830c0-3ae0-4403-9bde-baa002c637af"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.004583333333333334],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw9nHVcFdjTxg3AbkWxFcViSUH6Dl0XuB2gqxjYLbaIKzZrK2KgGBjo6gqK
yR1j7QIRJeQuIti12PnyuzPn5Z9dP8CX5z6n58ycbkMnKkbUqVWrVoRZrVr/
+6/pKzEGT//a83rjqMG5zv/7mhqDgy5bNNvXLTY3zvQVg0+/fl/y4W1s7ubU
mi99DP7s3nLnzK+xuTdv1HxJYzAULmXNsYrNNfEgBjfMfhG2YtDvxHOOwVbu
V/pOCdIRzyYG33lk5//YH0U8qxjMqPK1+s+2P/Eax+CPzT/G/HFP4kMCY7CR
eUps26caHxOuOhr/XB57senfw3xMvKpotJjrOP/vUeN8TLyiaCxfohkatn2K
j4l3Ixq1dV/etns0nXgYjZXDSrI6584mXlY0yv3X3Br4eh7xMqLxW9UNxwlt
EomXGo2/PjWLProhkXjJNd/H5ZPS1YnES4zGart3KyePTyDe1GgsGfBrQCvf
2cSLi8ZPKXXOtrCYRjx9NK5/5d1IN2wk8aTROObZ+k5d+7kQD6Jxl9mr+L/u
jWD/onG4+fh11admsn/RePPJkN1NHixk/6LxUMsDVX9uW8H+RaN/7/nZ/TLX
UHvUisYh6Rc7SSI3EK9aj/E5FwaEz99EvCo9Osa1qHOp9hbiFelxVItZoedT
thLvhh7L1tdTlZhtIx7qccC6A1HLWmwlXpYeteHpZhdXphIvQ4/pDm+Nd/Qb
iJeqx57W8Q+640riJeuxz/fIz4nLE4iXqMcudw+Pzx45kP3TY6Mv6TZzlMvY
Pz3KV88bMfPUJvZPjxsXdjZ2ubKT/dPjhJulb+4q97N/elxuk7oJjh4mnrMe
d5acTBv3z1Hi2eixu1Pa9CM+x4hnpUerB99V51vmEK+xHmXOOYO2NzvB/U+P
FeaPPr83P8H9T4cFi12HvLl+nPufDm2/+f3hDNnc/3R4J6nv8MfSI9z/dCjZ
esK607093P90OOroi/k+K1Zz/9OhOqmBYfPYVeyfDpvXPuX5qvcB9k+HZ5Lf
bb7ZMIf902Hw0p/nL59E9k+HUcc/Lrz9+h8evzpMSK+waF1xjcevDies0uc4
Rt7OpebQYfnW9Nn7JuflmuRJdbhkltVz6wP5PH51OHTXiLxdfe9y/9PhhQrf
tgl38rn/6dDH4eQfcxPyiGelwy6n8ncE+9wiXmMdrnUoefNvxGXufzqUfVPN
yNSf4f6nxYEVv/9mbUjh/qfFrV1X4ap+2T4mXpEW4xotX/luxxUfE++GFqf6
3Pnww7KA/dPi4npHKy1blLJ/WmzaRX0i8105j18tvj9y/JBmXSXxUrXYo/l6
+9JjT4mXrMVd+i7Lk7q84PGrRe8RLo5WKS+5/2nxxs1ut/6pesn9T4vvKswe
uBtfEE+vxfFDJf4vo58RT6rF9B3+hoG+ldz/tPjE5tMJeWsj9z8txoc+H7Fq
/h3uf1q8lDut+v7qVeyfFoujfSeVVhewf1q0z5YuahlXyf5pcVSbd7unTHzL
/mlwSs/bGTddPrJ/Guz4uF/jffiNeEUanNxQY3YrtpaB/NPgrv3pV81n1DGQ
fxpM713e1v1TXQP5p8EzUUk9O542M5B/Gly079SP92lmBvJPg2kuTtUFSXWJ
l6zBiKRNugea2sRL1GDCLIeAnS2/c//T4Mk030tz3au5/2nwY53fnS7O+5f7
nwY1x8Z3bbY8n/3ToNt25+nYvJr902DXw+WF6tDaEvJPg1K5Z+0LIQ0k5J8G
fzUxvm+a0lxC/mlwu9F3Rdvw1hLyT4NP556d7ryirYT802DzRkOvze/annjV
ahw2qjDmWUEH4lWp8XlvHGiM70i8IjVOfbdzucv9DsS7oUa3hvEx7QqtiIdq
PLLyv/y3MZbEy1KjrNzWomVsC+JlqHHrBGfr5mXmxEtV4978yJ0/WnJ/SVZj
WlPzhXXln3j8qnFJ1JZa+wY3o/aYqsbfV5Qs3d62PbVHnBoHP+hwfKqsO7WH
Xo19JsywLB7Vy0DznxrtP337omlpS+0BajR7O+nR/LoOxHNWoy7v/uLQREfD
SJN/anw1edPHfwc5GWj+q/n+bombcZ4T8Rqr0fW71OzjJUfi1VLjF5f24y7a
MK9ahc/sWzXs3qsf8apU+LmzZfjODj2IV6TCiV5jnq1eZEm8Gyo8ti9ddXxz
Ea8fKsyvTt4+9Usb9k+Foc+m+K7N6SUx8TJUuPhz9rKW8U4Smv9qeKNbHgup
6y6h+U+Ft0959JgwQELtkajCwP9Wwpbf/Yg3VYWWDy3ibLcHEC9Oha4XlwXY
OwcRT6/CxmlLrUdVBxFPqsIVX+8XXj8bRDxQYb3B182yZwRy/1NhxDtL/+/N
/Ilno8LwB2ui79eWEM9Kha0HblyxZZcL8RqrsNH5BWdmDOnB/U+FGxK8klXz
6rN/SlydNvOfG8e4PaqUOHNOt1aXtwP7p8Qe+VOjxi0NYf+UuGPlpeDOnWU8
fpWYGG9fMe+QksevEivPrFrsjBriZSjxxCSbBv176ImXqsRhOWv9jPujiZes
xPTHCf1n28Tw+FXig7Sr37OnR3P/U+LczgFLuyzQES+uRq/75p3j3dTE09f8
vaN/lo7eJuP+p8SUhYrGrxMDuf8pcVDy/pFNW9tx/1NiZJ+k8vIDDuyfEr9W
7fUOXh7K/ilx8e6oLmmn1eyfEiOyDa/bHfmd/VNi3Jz8mYHbhvH4VeAbq3rx
6ukjefwq0H/Bm+/9MscQr0iBVx2MrYPNxxPvhgKLcxfaD1JM4PGrwPQGV3t2
HDmB+58C035cuV3WbTyPXwUObFwrwG0881IVuNVjr9LJL477nwIdGp690vHA
EO5/ClzvVX1203wl9z8FZr2KGXayTj/ixSlQH1Zh97ptBPunwCm940qb3h3C
/imwtndqnY2bxrB/CmxckdmznuUU9k+BZ8at8gr7czrNBzYK7HrVf0XG9Nk0
H1gpUH1FJ+ufMo/HrwJbTnkxMDxnPo9fBd6bsuz8QUUi9z85tv3TqzqmYyLx
quQYtGpHxu+qBOIVybHV5wk69bPZ3P/kmG9ffvjs53juf3L0dJ+sOdR3Ivc/
OeKs7FtD1gzm9UOOae6WtXdF2vL8J8dZB4pGvX8+nP2TY7+bHie+zZ7G/smx
Wcr9wkMrEtg/OYbrthS06pDE/snR+mD60ZULlhJPL8ch6/eqOnsn8/iV48//
sprktlrF47dG//g9kX1HrebxK0fNuT6tDDtX8/ohx15jksZ17r2a1w85Dj+a
+2Jq8Z/c/+S4e1d0VbOHy7j/yXGci8eFs7FJ3P9k+CS854eu9edw/5PhkLq6
Obcuj+D1Q4YWAX5T0/cMZP9k+H6BZdWehNnsnww/fbV9V2G3hP2T4SRnh/Ur
565m/2RoN+LOcBfLDbz+yvCOa0JsYN9UHr8yLLnoFnhp/lYevzI87Tlk15zy
NB6/Mjzsbmjq1nwHrx8yrFffM9Cp0Q5eP2QYNn/t6Db70rj/ydC35+vU8Mtb
uP/V8OvYzd0/LYX7nwy3jJ8woMO5Ndz/ZDh9W9aiRdsWcf+TYaPDSbnDlsVx
/5Ph05bnG+y5OYP9k2GEx6hLx7Qr2a8obJ/zNqXBrE28vkbhe8s744wnd/B4
jMIdwSdPbHuwm/tPFK68stPZbPg+7i9ROFUTGC/rm8n9Iwpl35uNuvfzIPGk
UXj5wYIGd08f4vaPwoaXM3zbBRzi9o5Cy+0zhq9MymR9Uej/NEN5M34f64vE
oL+uqc512s36IvHWVYXP4u7bWF8kdv3TPT/o3irWF4nLWuhh38Mo1heJf156
0GWX7Ur2PxLT/7zpd/rIdto/SSOx8GV6lGWTfQYnEzASV9W+5Lvx2mH2MxI3
FyyveKvPMvwyfUWgk5P7BTf34zxeI7DKeunoiwNP8P4uAtV3W7+y2H2SeFkR
uOtd+2l735/k/hOBZyIPRJ73OEm8+RF44Y+61Ymjc1hfBJodefJszNxs1heB
h9qNeLR21hHWF4GKWnsmnnqawfoicHTB8Io5sJH1SXHEhYROOfkT2T8p7svf
0urEje3snxSHztxZ//3XQxLSJ0WfoasGZl45xv5JMeLIxjl2dc9ISJ8U29az
ab36KHL71vz8sVYNi4vOc/tKUTE6wGLDkIvEc5binicN1O1c/uH2lWKm74vh
PUL/Id6vcIy7veH5hNUXWV843lAe+Rle6wLrC8dYu7yk5muQ9YWjrr1VXJOF
p1hfOI7/98j1iW5HWV84Vi/2Gfbk/Q7WF47v/O6Yh+z8g/0Lx4yPK29cV2ay
fzU/3/CH7YfKE+xfODY3976579g59i8Muw66OM5z4CVu3zCc9N+c/S4e17h9
w1AWZrlmj+tNbt8wzJ02rSIk6Da3bxhWjVuc/crxDrdvGNY+sr94WcAdbt8w
jDBiSsr+26wvDAOe/m278QjznMNQV6fI+tuCa6wvDPvmXav6VusS6wvF9zOy
s+t1RtYXiklJJYM33/+b9YXipbY7y48tmM76QvHr3wkqq3pH2L9Q/Nf9oLnL
WmT/QtGqjW7at+gr7F8oLk7+/jT8wy1u31D0beDr37xjPrdvKPZrOH+/tE0B
t28oPkiofT4z/h63bwheDfwW/yqikNs3BE9cVQ8+vb+Q2zcE7+Rf6fphRSG3
bwjOW9Q3XPvyHusLwUavh4XvPVbA+kJw9OXxz25fzGd9Idjz5+9LLO7fZn0h
+KRAGSj/fJnnlxDMc505eOim06wvBG079m+ffH0Fzy8hGDemsP9yezF+g9Fv
YOXnY/0v8/oQjJJDbW6ocu7wehCMRli57cL+Am7fYDwrPfM0edF9nu+DMbTe
h0ptYhG3bzDGdnNXXswr5vk8GM/vrOrwaE8Jz9/BGON+FGLbl3L7BqMsNS5q
uqSU9wfBOCmhe1Veu1LWF4Tyc/nX2m4rYX1B+MJ2aXydrGLWF4Q52m+xR/sV
sb4gPFvUz/LtqULWF4ReR7ZsTavOZ31B2KdBWmry6WusLwh9sz9V3umfw/qC
ML1Pq1bx6/axf0HYIfSLevGYy+xfEObPzPOb+ze3R1UgPgvptHDu5vvcvoHo
1H3bsimXinl+DkR51hfj0zOl3L6B6GzVIGrZq4c8Pwdi4oIRCdd2lXH7BmLO
z0+nLjQ1cvsG4ryKMOnOMCO3byBa5P+5TjfSyPoC0f3D6FXzxxlZXyA2iPU/
2DTGyPoC0GH1/r2S35h3IwDzLxVGxRWUsb4AVEfUG3DGuYz1BeDakcHyL22E
vgAM+8139Kj2JawvAJPc7j+rlcqfVxqA8ka21wNS8lhfAA4emqJtuRBZXwBm
/OX7Zs/Mg9y+AVh+ONnx3tCb3L7+OLZxg4TE1EIev/74feLeaa/9uL9k+eON
KMeIX+cfcvv6Y9/Ob41/1Ddy+/rj48snHhftNnL7+uOL7pYHPZ8aeX7xx2af
xuzp9dPI7euP22qmusk1/yZ9/ji9n83aQR+ZV6vm3y9vF+leMa/KD7MmfP46
5QnzbvghvH8zf1MV87L88Df/Wy/bvWBeqh9eH5mwMqNa6PPDOUMx4Op3oc8P
F87dYD/3l9Dnh/UebVR4vRb6/NDC/vSu4r+MfB72w+OPYnN8mgh9fmib26P2
pbSHfF7zxcOlzV1/X8rj7YYvqpopR092LDD0N+nzxd3vFscMX3KOz1++eGTs
lAV3kk9y+/rib2sHxfZ0vsvnU19Mm+d9KG9DMe9nffGA3a31XRqWSUw8Z180
l7ZrGzjDyOclXzzx6OC8bu9E//PF0U0upXz/ZiReFeCsfSHn+xQa+fwD2PPt
5Pd/bTMSLwuwUxt3+ZhY5qUCRudN8XnUm3mJgLEuh3v896mM9QFurerVdOOd
MtYHaOVd2/FultAH+CgqMs1hZxnrA9RPzWn4cUsZ6wNcvcPdLyy9THLLpEeC
TbpUrvE6yj+fKkHftITi07fE35Og+crrc6d/FHwJWn5oaVxXo6+2iSfByp8v
1vQYZmSeD870/9TlW7r4PD6YqFsX4FHKfsT54DT/A8Of/OTP7+yDd+tFrXP6
V/B8sPhdVIeOXQXPG9Pvbl7gXFzKPG/MtRvbdGPt+8zzRuk1y6zFey4yzxtv
N9lSVvjGYCCeN+7ULG9a1LPQQDwv7G31xa7L/VLuD14Y7Ht1ZEepkc/XXnjV
y3qy1Scj9R9nL/wssdyQ8UL0Py8suLrnD9fNRuZ5opP/5iXnHLm/pnqiqlDt
tOxSGfM8MfCgrO7w2DLmeeLZhLRrzS3KmOeJl2NPuH859pB5Hmg8esotfvJD
5nng1iWDdg534/4e54FVIRvjZzd8yDwP3Ntqa+TQJ2L98MANXvGBd2+VMs8d
35eoZ6ei+LzueKpo6+vNZ0qZ5467trb4VHS+lHnuOHJiV9X0u4Lnjo+czRwO
vRY8Nyz4969l91sLfW6YEffPxhFBQp8bWtRfUHl3odDnhvWnLZi/7uZD5rlh
/tPLuYXWZTxeB2Afi8gE68VlzBuA2rGZj4f+V8bzxQDsqdRKzg0V88MALL+S
MzDtimiPAWgb+Hn/8Zr5hHiuOHnTPEu7TNEerujf36Pt3LyHzHPFCZkHo1cX
3WeeKzqVR42Z2OA881zRZ/TbELc2V3i8umBbXaexF5OKuP+5oMZ3YXzacrFe
ueD7afOa1nos1icXrHTqVT/vlZgPXDBGWn93VpIY//2xe901Bz2+iPHWH82e
TG1hMUbw+mNkWcevhY8eMq8/Os57UFIxktejWv2x2M7oH/i1lHnOaCe1d7me
KsaHM955Nc36SmAp85xx/hibvDE/SpjnjFIv52ZVhhLmOePzdR32LkguYZ4T
TmlVfmHH0BLmOaG6y80tF3zF+ueEL+uVdFjSR/CcsDeWPd9lJXhOuFq3Y+yr
FoLniMMtDjSTtxQ8R3ziEdq98P/XU0f0uDmnU1o/wXPE1IW5yZUBgueII857
TjUfKXgOGKj0bxm/VvAcsN29bqevXxY8B7yjePz6XL1S5jmg4v17BwdlKfMc
8Pz2ma3rZ4r9iD1WuFx4I2ku/LbHVt+CvXYsfMh/zw5Xr6nvGm4u2scOP1Xo
NqatE/OpHea9Pdl+em/ej6T+hjmnhmgsj4r+8Bu2+XBrw6xfYv9hi32t3asx
ifcncbYozx9/cm+a0GeLXw90vNjmSj7z+uHgol5jzV13c3/th0PG7Hi44dk9
Xo/7Yp/Qdi2OGET/7ouKzZe7et4S46MvhqcrKiveiPW5D/5nbTfHb4YYT31w
YerS3CkFZczrjc7fbrdX2Ynx1xsvvTsxdd5aMX5747qswPaO5g8Nm0y8Xrjc
3iOjy5JSPr/0wvnFZXfS25Yarpt4NthKXi837ViJYYSJZ4Mu49alPB9cYvhp
2uD3xLrXx04e16aEeT3x+JxWJf3uFTOvJy7OLq+jSitmXg9soHFe5TSpmHk9
8EHp2zf9w4qZZ40W4xqPqOxXzDxrlLp99H/aWvCssbrsddYXM8HrjhZrg96/
+FbEvO5YkBPukPGliHndUIHHjNY/i5jXDTE+/Oi0BoLXDZ16b693toPgdcX1
EcM+uroIfV2xj+bwU2dNseG7idcFbeZvy+s8v9jgYPr9Lhjkp/qScKTYMMz0
851x1Qld8LfnxYaNpr/XCW1GdMFB9iWGqyZ+RyzyeTpjY0IJ8zrg0j6Z3meK
SpjXAbefGmdez6+Uee2xxD/w+6kTpcyzwuiVfRu/8XnIvHbY9HU73beCh8xr
i1Yzo70azypjXlsslDb8e4q1kXmWWNLox6ilZ4zMa4PxRw0/NtbsJ4nXGh+e
tIfnrYzMa4WacuPZpWrxeVth+Ph5oZMWX2JeSyw7fmDdNMNVCfFa4Dzbcb07
/CiWEK85jm00VLXSzyj5bOI1w2Sd155fNeNpiOn3m6J/o6lvcg8YJRdNP98Y
m7mta3GrnlFia/p7jXDl0572kdoyyXoTvwFmOmvDb//1kHn1cMde76CuNft9
4llgJ53z5IMrSplnhkfba8KqWpQyry4G36r4uimjRLLaxKuNGyVXHo8PKZG8
pQOwoWKCeVLXj8USNP3+d8P1edtWrP6rWLLU9PNfDO7VZ77+M6lYojP9vY+G
xmbbNrzxLJZ0NfGrDQEp3cYMblYs+deEe2NoYNX6w+LnRZJE0+8/M3T8mrq6
+kaRpLnp5ysMhdYfx4QfL5IMMX2/yDCxepZleEaRpJbp31cN9kuuHbmwtYjn
l7deNG/W/Nv0P1cl//99CthLxO/HEV/ygPk36e9LOvHfb088SSPWF0H6JcGs
P5E+n6QJf75s+vwSL/78T8gfyU32pwlvUJ+wfxnkL2xhf4H8Byn7X0ztA6e4
faZR+4E1tx/x6sNebt+91P6Qxe1PvEaQwv2DeI3BkvsP8ZpCGPcvCxOvOazi
/ldA/ROiuH/uoP4LXbn/jqf+DSnZ1L89qP+D80Tq//VMvNZwk8cH8VrDdx4/
xGsD03l8Ec8SCnj8Ea8tXOPxSbx20IzHL/HagRmPb+JZgYrHP/HaQyHPD8Tr
AJt4/iBeR0ji+YV4HSGP5x/idYKePD8RrzOs4PmLeF3An+c3MxOvK/Tg+W8M
zY8g5sc7NH/COp4/B9D8Co48v26j+RfE/FvXxOsOYn4mXne4x/M38bqDmN+J
Zw0feP4nnjWI9YH09YD6vH4QrweU8PpCvB7QkNcf4vWEpbw+Ea8nnOL1i3g2
0IjXN+LZwABe/4hnA214fSReL1jE6yfxesE6Xl+J1xtSeP0lXm8Q6zPxeoMn
r99utL7DKl7f02j9h0+8/pvT/gAieH8wlvYPEMj7h3zaX8CzENpfEK8fWPL+
g3j9oDCP9ifEs4WzmbR/IZ4tbOb9DfFsIYj3P8T7DcT+iHi/wd+8fyKeHVzn
/RXx7OAN77+IZwfJvD8jnj005v0b8ezByPs7yrFzgLO8/3Ol/SFIeX84mvaP
cJ33j1tpfwmteH95m/afIPafxHMEsT8lniOk8P6VeI7gzvtb4jnCU97/Es8R
hvH+mHhOIPbPxHOCPry/Jp4TvOL9N/GcQMv7c+I5gdi/E88ZXvP+nnjOIOP9
P/GcIYnPB8RzhgI+PxDPGez5fEG8/lDG5w/i9QcPPp8Qrz9o+fxCvP5gzucb
6p/9oR+ff4jnAoP4fEQ8F3jB5yfiucBbPl8RzwVC+PxFPBfYqaXzGfFc4V0c
nd+I5wpXH9P5jniu0OEgnf+I5wrT+HxIPFeYy+dH4g0AOz5fEm8APODzJ/EG
QCc+nxJvAIjzK/EGQHc+3xLPDe7w+Zd4blCbz8fEc4M6fH4mnhvs4fM18dzg
Lp+/af5zh3I+nxPPHcT5neYHd0jn8z3NJ+5wms//xHOHDxwfIJ4HpHD8gHge
cJDjC8TzqJkPKP5APA/YzvEJ4nlAOccviOcJVzi+QTxPuMTxD+J5QgjHR4jn
CQM5fkI8T3Dn+ArxvKCI4y/E8wIRnyGeF4j4DfG8oCfHd4jnBbU5/kM8b8hR
U3yIeN7wuSHFj4jnDV+uU3yJeN6gs6f4E/G84RTHp4jnA284fkU8Hyjk+Bbx
fGAKx7+I5wNzOT5GPB8Q8TPiSeAxx9eIJ4G2HH8jngREfI54EgCO3xFPAo04
vkf9D0DE/7bQdgBEfNCFpgeo5PihKd4jBRDxxVGmv1eD5/ijiZcIMIzjkyZe
KsAgjl+aeFkA3Tm+SfEjgN4c/zTxqgBmc3yU9PnCOI6fkj5fOM7xVdLnC7U4
/kr6fGEdx2dJny8M5vgt6fOFMWsovkv6fKHrKIr/kj5fmPMfxYdJny+kcfyY
9PlCLseXSZ8f+HH8mfT5wTmOT5M+P2jC8WvS5weNOb5N+vxgEce/TbhEPxDx
cdqX+8FVjp+bcFl+IOLrFI/wA1+Ov5twVX4g4vO0ffYHEb+n+K8/xHN8n6Z/
fxDxf4of+4O4HzDx4vxB3B+QPn8Q9wukzx868P0D6fMHcT9B+vyhku8vSJ8/
iPsN0hcA4v6D9AWAuB8hfQEg7k9IXwDM5vsV0hcA4v6F9AWAuJ8hfTU8vr8h
fQEg7ndIXwDc4/sf0hcA4n6I9AWCuD8ifYEg7pdIXyCI+yfSFwjifor0BYK4
vyJ9gSDut0hfIPTg+y/SFwjifoz0BYI135+RvkAQ92ukLwjE/RvpC4JpIXQ/
R/qCQNzf8f0eiPs90hcE4v6P9AWBuB8kfUFQzveHpC8IxP0i3z+CuH8kfUEg
7idJXzCI+0vSFwxRfL9J+oJB3H/y/SiI+1HSFwzi/pT0BYO4XyV9wbCD719J
XzCI+1m+vwVxf0v6gkHc75K+EBD3v6QvBDr3oPth0hcC4v6Y9IVA0D26XyZ9
ISDun0lfCPzO99O0XofAAL6/Ns3XWSGQzvfbtJ8KgSK+/zat91UhkM334zS/
hMIJvj838axC4W++X6f5PxSeN6D7dxNPGgof6tP9PO0fQsGc7+9p/guFwa3p
fp/0hUKFG93/k75Q8DxM+QGkLxScf6P8AdIXCvrFlF9A+sKg2yzKPyB9YXCN
8xNIXxg85vwF0hcG6zi/gfSFQQLnP5C+MKjL+RGkLwzKOX+C9IXBH5xfQfrC
oA7nX5C+MKjN+RmkLxy2DKT8DdIXDjPNKL+D9IWDRwPK/yB94fClmvJDSF/N
z7tR/gjpC4chyyi/hPSFQ0I55Z+QvnBY3oHyU0hfOJzg/BXSFw6NVJTfQvqk
kMT5L6RPCsc5P4b0SWEt58+QPinYcX4N6ZOCBeffkD4p3LCg/BzSJ4XUw5S/
Q/qkMCOW8ntInxRyplP+D+mTQsxtyg8ifREwKJ3yh0hfBOjvU34R6YuARnUo
/4j0RYCLFeUnkb4IGMv5S6QvApoupPwm0hcBTzj/ifRFwGHOjyJ9EeDJ+VOk
LwKOcH4V6YuESkfKvyJ9keDB+VmkLxJG1qL8LdIXCY9fUH4X6YuEzBWU/0X6
IuHrBcoPI32R0FhK+WN0PxsJnispv4z2B5Fw7hrln9H9biTM4vw0um+MgjGc
v0bzSxQ4cX4b3YdFQRvOf6P9QRRc5Pw4uj+LAn/OnzPxEqNAx/l1NP9FwQTO
vyN9UTCL8/NIXxTs4Pw90hcFuccpv4/mPxmI/D/ODwSRH0h6a76fTfmDlB8s
g/Q0yi8k/TKwmkD5h7SdlIHIT+T8RRD5i5RfK4MZnN9In08GzTj/0cSbKoMD
nB9J86kMRP4k51eCyK+kzy+DZZx/SfnVMngwnPIzyQ8ZtOD8TRMPZSDyOzn/
E0T+J4U7ZdDLh/JDya+a37eg/FETr1oGlhGUX0r+yUHkn3J+Koj8VPJPDns5
f5X8k4Mr57eSf3KI4fxX8k8OIj+W82dB5M+Sf3Loxvm15J8cCjIp/5b8k8Nz
LeXnkn9yEPm7nN8LIr+X/JPDf/so/5f8k8Py7pQfTP7JQTGX8ofJPzmI/GLO
PwaRf0z+yWEY5yeTf3KYxfnL5F+Nfs5vJv8UIPKfOT8aRH40+acAG86fJv8U
Nedtyq8m/xQwkvOvyT8FiPxszt8Gkb/N+d0g8rtp/62AJQGU/23ar09VQOe6
A0354TQfKOClD+WPm8ZTsgIOcX45nR8U8JPzz028DAU85vx0Ok8ooIrz1008
VMBJzm+n8amAG5z/buIVKSCT8+PpvKGAokTKnzfxqhUwivPraf5TQu5syr83
8RorYWsW5efTeUQJebsof9/Es1FCaiXl99P5RFmz36H8fxMPlGDYQPUBNB8p
YXMS1Q+YeHolRGVRfQH5p4R/uf6A/FPCS65PIP+U0GA71S+Qf0rYw/UN5J8S
ZFz/QP4pYRPXR5B/Sojn+gnyTwmfp1F9BfmnBC3XX5B/SkjKo/oM8k8J92dT
/Qb5pwSHrVTfQf6poNF4qv8g/1Tw+QLVh5B/Kijl+hHyTwUvub6E/FPBRa4/
If9UIOP6FPJPBdu4foX8U4EZ17eQfyroxvUv5J8KbpVSfQz5p4LKd1Q/Q/6p
IILra8g/FbwbRfU35J8KzLk+h/xTgfsTqt8h/1Tw8w3V95B/Kjh0kep/yD8V
vPCm+iDyTwVbu1D9EPmngiIHqi8i/9SgdKX6I/JPDTKuTyL/1BDL9Uvknxoe
cn0T+aeGzlz/RP6p4eIbqo8i/2p+/iPVT5F/ahg/nuqryD81bLxP9Vc0/6lh
4XKqz6L1Ug1PIqh+i/xTQ3Z9qu+i+U8NFfep/ovmPzUYJlJ9GM1/arjM9WMm
Hqqh4SqqLyP/1JDB9Wc0/6lhPden0fynhkdcv0bznxoUXN9G+wMNvGxI9W/k
nwbiuD6O5j8NDOb6OZr/NHCI6+to/tPAXhnV35l4oIElf1F9HvmnAeNWqt+j
+U8DLf6m+j5aPzSQZ0b1f+SfBhZtp/pA8k8DrWdT/SD5p4GzXF9I/mngDNcf
kn8a2MT1ieSfBk5z/SL5p4HFXN9I/mlgINc/kn8aGMD1keSfBv6qoPpJ8k8D
33tQfSX5p4Uvran+kvzTwqSjVJ9J/mnBW0/1m+SfFq6sovpO8k8Lx8Ko/pP8
08KnXlQfSv5pYUg61Y+Sf1rI5PpS8k8LLR9T/Sn5p4Uyrk8l/7TQi+tXyT8t
xHB9K/mnhafNqP6V/NPCQa6PJf+0gJ2pfpb800KlBdXXkn9a8PKm+lvyTwvQ
kOpzyT8tTO5M9bvknxY+P6f6XvJPB1Xfqf6X/NPBQ0eqDyb/dLCW64fJPx3o
ub6Y/NNBKdcfk386GMz1yeSfDsZx/TL5p4OTXN9M/unAluufyT8d9OP6aNq/
6EDUT3N9NYj6aq6/BlF/bcJl6EDUZ1M8QAeifpv2LzoQ9d1c/w2i/pvrw0HU
h1O8oEYf14+beNU6EPXltH/Rg6g/5/p0EPXpXL8Oon7dxLPRg6hvp/iCHkT9
O+1f9CDq47l+HkT9PNfXg6ivp/iDHkT9vQk3VQ+iPp/804Oo3+f6fhD1/Vz/
D6L+n/zTg3gfgPzTg3g/gPzTg3hfgN8fAPH+AL9PAOJ9AvJPD+L9AvJPD+J9
A/IvGsT7B/w+Aoj3Efj9BBDvJ5B/0SDeVyD/okG8v0D+RYN4n4HfbwDxfgO/
7wDifQfyLxrE+w/kXzSI9yHIv2gQ70fw+xIg3pfg9ydAvD9B/tV8n9+nIP+i
QbxfQf5Fg3jfgt+/APH+Bb+PAeJ9DPIvGsT7GeRfNIj3Nci/GBDvb/D7HCDe
5+D3O0C830H+xYB434P8iwHx/gf5FwPifRB+PwTE+yH8vgiI90XIvxgQ74+Q
fzEg3ich/2JAvF/yf6+gOHE=
"]]}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"A[a.u.]\"", TraditionalForm], None}, {
FormBox["\"\[Zeta]\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotLabel->FormBox["\"(right) LP\"", TraditionalForm],
PlotRange->{{-110., 110.}, {-0.49998251532186344`, 0.49999991546918293`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.873104640022738*^9, 3.873104730445936*^9}, {
3.8731047906328907`*^9, 3.873104812738411*^9}, 3.873104847382846*^9, {
3.873104881189378*^9, 3.8731049160626993`*^9}, {3.873105076486533*^9,
3.873105082199766*^9}, 3.873105124531505*^9, 3.873105296747751*^9},
CellLabel->
"Out[489]=",ExpressionUUID->"11014e46-41d9-4d6d-8814-96af03789ecb"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Table 1 / Figure 3 Gaussian", "Chapter",
CellChangeTimes->{{3.872990613197942*^9, 3.8729906145130653`*^9}, {
3.872991255442811*^9, 3.872991257626719*^9}, {3.87299136429104*^9,
3.872991370252056*^9}},ExpressionUUID->"feafdc42-f0c9-40bb-96ef-\
ef5a5225866e"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Clear", "[",
RowBox[{
"f", ",", "\[Phi]", ",", "a", ",", "\[Tau]", ",", "\[Omega]", ",", "d2I",
",", "\[Chi]", ",", "y", ",", "ff", ",", "fm1\[Xi]", ",", "dfmi", ",",
"a0"}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"f", "=",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "2"}],
RowBox[{"x", "^", "2"}]}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"fm1", "=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"f", "==", "ff"}], ",", "x"}], "]"}], "[",
RowBox[{"[",
RowBox[{"2", ",", "1", ",", "2"}], "]"}], "]"}], "/.",
RowBox[{"{",
RowBox[{
TemplateBox[{"1"},
"C"], "->", "0"}], "}"}]}], ")"}], "//", "Normal"}], "//",
"Simplify"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"fm1\[Xi]", " ", "=", " ",
RowBox[{"fm1", "/.",
RowBox[{"{",
RowBox[{"ff", "->", "\[Xi]"}], "}"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dfmi", "=",
RowBox[{"D", "[",
RowBox[{"fm1", ",", "ff"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"y", "=",
FractionBox[
RowBox[{"1", "-", "\[Omega]"}],
RowBox[{
RowBox[{"a0", "^", "2"}], " ", "\[Omega]"}]]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Chi]", "=",
RowBox[{"Refine", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Omega]", " ", "\[Tau]", " ",
RowBox[{"a0", "^", "2"}], " ",
RowBox[{"Integrate", "[",
RowBox[{"fm1\[Xi]", ",",
RowBox[{"{",
RowBox[{"\[Xi]", ",", "y", ",", "1"}], "}"}]}], "]"}]}], "-",
RowBox[{"\[Pi]", "/", "4"}]}], "//", "Normal"}], ",",
RowBox[{"{",
RowBox[{"\[Omega]", ">", "0"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"d2I", "=",
RowBox[{
FractionBox[
RowBox[{"2", "\[Omega]", " ", "\[Tau]"}], "\[Pi]"],
RowBox[{"Abs", "[",
RowBox[{
RowBox[{"y", " ", "dfmi"}], "/.",
RowBox[{"{",
RowBox[{"ff", "->", "y"}], "}"}]}], "]"}],
RowBox[{
RowBox[{"Cos", "[", "\[Chi]", "]"}], "^", "2"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"d2I", "//", "Simplify"}]}], "Input",
CellChangeTimes->{{3.872990616421753*^9, 3.872990790011869*^9}, {
3.872990831548966*^9, 3.872990981064987*^9}, {3.872991034203135*^9,
3.8729910602084723`*^9}, {3.872991276060063*^9, 3.872991276368257*^9}, {
3.872991353943652*^9, 3.872991360680419*^9}, {3.8729916188472757`*^9,
3.8729916191989107`*^9}, {3.872991772185957*^9,
3.872991775102532*^9}},ExpressionUUID->"51a34d1c-a492-4e49-856d-\
bec06cd61090"],
Cell[BoxData[
FractionBox[
RowBox[{"\[Tau]", " ", "\[Omega]", " ",
SuperscriptBox[
RowBox[{"Sin", "[",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"\[Pi]", "+",
RowBox[{
SqrtBox["2"], " ", "\[Tau]", " ",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["a0", "2"], " ",
SqrtBox["\[Pi]"], " ", "\[Omega]", " ",
RowBox[{"Erf", "[",
SqrtBox[
RowBox[{"Log", "[",
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["a0", "2"], " ", "\[Omega]"}],
RowBox[{
RowBox[{"-", "1"}], "+", "\[Omega]"}]]}], "]"}]], "]"}]}],
"+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\[Omega]"}], ")"}], " ",
SqrtBox[
RowBox[{"Log", "[",
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["a0", "2"], " ", "\[Omega]"}],
RowBox[{
RowBox[{"-", "1"}], "+", "\[Omega]"}]]}], "]"}]]}]}],
")"}]}]}], ")"}]}], "]"}], "2"]}],
RowBox[{
SqrtBox["2"], " ", "\[Pi]", " ",
SqrtBox[
RowBox[{"Abs", "[",
RowBox[{"Log", "[",
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["a0", "2"], " ", "\[Omega]"}],
RowBox[{
RowBox[{"-", "1"}], "+", "\[Omega]"}]]}], "]"}], "]"}]]}]]], "Output",\
CellChangeTimes->{{3.872990737219708*^9, 3.872990773435214*^9}, {
3.872990832735961*^9, 3.8729909128998327`*^9}, {3.872990959415032*^9,
3.872990981754195*^9}, 3.872991053142825*^9, 3.872991086019075*^9,
3.872991318575102*^9, 3.8729917617221127`*^9},
CellLabel->
"Out[387]=",ExpressionUUID->"9478719f-a3ac-4c2c-80fa-14402255dee6"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"\[Tau]", "=", "10"}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{
RowBox[{
"choose", " ", "10", " ", "instead", " ", "of", " ", "200", " ", "to",
" ", "see", " ", "the", " ", "oscillations"}], ",", " ",
RowBox[{"factor", " ", "of", " ", "2", " ", "missing", " ", "in", " ",
RowBox[{"table", "?"}]}]}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"a0", "=", "7"}], ";"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"\[Tau]", " ", "\[Omega]", " ",
SuperscriptBox[
RowBox[{"Sin", "[",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"\[Pi]", "+",
RowBox[{
SqrtBox["2"], " ", "\[Tau]", " ",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["a0", "2"], " ",
SqrtBox["\[Pi]"], " ", "\[Omega]", " ",
RowBox[{"Erf", "[",
SqrtBox[
RowBox[{"Log", "[",
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["a0", "2"], " ", "\[Omega]"}],
RowBox[{
RowBox[{"-", "1"}], "+", "\[Omega]"}]]}], "]"}]], "]"}]}],
"+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\[Omega]"}], ")"}], " ",
SqrtBox[
RowBox[{"Log", "[",
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["a0", "2"], " ", "\[Omega]"}],
RowBox[{
RowBox[{"-", "1"}], "+", "\[Omega]"}]]}], "]"}]]}]}],
")"}]}]}], ")"}]}], "]"}], "2"]}],
RowBox[{
SqrtBox["2"], " ", "\[Pi]", " ",
SqrtBox[
RowBox[{"Abs", "[",
RowBox[{"Log", "[",
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["a0", "2"], " ", "\[Omega]"}],
RowBox[{
RowBox[{"-", "1"}], "+", "\[Omega]"}]]}], "]"}], "]"}]]}]], ",",