-
Notifications
You must be signed in to change notification settings - Fork 1
/
arXiv0709.1704.nb
16918 lines (16843 loc) · 972 KB
/
arXiv0709.1704.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 995025, 16910]
NotebookOptionsPosition[ 992928, 16865]
NotebookOutlinePosition[ 993321, 16881]
CellTagsIndexPosition[ 993278, 16878]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[TextData[StyleBox["Quantum simulation of the single-particle Schr\
\[ODoubleDot]dinger equation", "Title",
FontWeight->"Regular",
FontColor->RGBColor[
0.2964217593652247, 0.6292210269321736, 0.2727702754253452]]], "Text",
CellChangeTimes->{{3.822636147120782*^9, 3.822636149053595*^9}, {
3.822636240732341*^9, 3.82263625191656*^9}, {3.822637212068983*^9,
3.822637212721833*^9},
3.823094727278884*^9},ExpressionUUID->"4cf711cd-8a14-4fae-b571-\
2a4ed51ef75d"],
Cell[TextData[StyleBox[ButtonBox["American Journal of Physics 76, 657 (2008); \
doi: 10.1119/1.2894532",
BaseStyle->"Hyperlink",
ButtonData->{
URL["https://aapt.scitation.org/doi/10.1119/1.2894532"], None},
ButtonNote->"https://aapt.scitation.org/doi/10.1119/1.2894532"], "Section",
FontSize->24,
FontVariations->{"Underline"->True},
FontColor->GrayLevel[0]]], "Text",
CellChangeTimes->{{3.8226362283387003`*^9, 3.822636334723393*^9}, {
3.822637289419742*^9, 3.82263728942037*^9}, {3.823094664048785*^9,
3.8230947013828173`*^9}},
FontSize->14,ExpressionUUID->"63c4d0db-d884-4cdc-a9ab-bab39c39aa50"],
Cell[TextData[{
StyleBox["https://arxiv.org/abs/0709.1704v2", "Section",
FontSize->24,
FontVariations->{"Underline"->True},
FontColor->GrayLevel[0]],
StyleBox["\nNotebook: \[CapitalOAcute]scar Amaro, February/June 2021 @",
"Section",
FontSize->24,
FontColor->GrayLevel[0]],
StyleBox[ButtonBox[" ",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://epp.ist.utl.pt/"], None},
ButtonNote->"http://epp.ist.utl.pt/"], "Section",
FontSize->24,
FontColor->GrayLevel[0]],
StyleBox[ButtonBox["GoLP-EPP",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://epp.ist.utl.pt/"], None},
ButtonNote->"http://epp.ist.utl.pt/"], "Section",
FontSize->24,
FontVariations->{"Underline"->True},
FontColor->GrayLevel[0]],
StyleBox["\nContact: [email protected]", "Section",
FontSize->24,
FontColor->GrayLevel[0]]
}], "Text",
CellChangeTimes->{{3.8226362283387003`*^9, 3.822636334723393*^9},
3.822636391632341*^9, {3.8226372468331547`*^9, 3.822637246833611*^9}, {
3.832755002125525*^9, 3.8327550028655148`*^9}, {3.8328159555988827`*^9,
3.8328159559877577`*^9}},
FontSize->14,ExpressionUUID->"31e228a0-4d5a-4bf9-95b9-dda13e8189a0"],
Cell[TextData[{
StyleBox["Introduction", "Section",
FontSize->24,
FontWeight->"Bold",
FontColor->GrayLevel[0]],
StyleBox["\nIn this notebook we simulate 1D linear Schr\[ODoubleDot]dinger \
equation with different external potentials.", "Section",
FontSize->24,
FontColor->GrayLevel[0]]
}], "Text",
CellChangeTimes->{{3.8226362283387003`*^9, 3.822636334723393*^9}, {
3.822636391632341*^9, 3.8226364148286*^9}, {3.822636632459257*^9,
3.82263666754714*^9}, {3.8226367225529222`*^9, 3.822636739164402*^9}, {
3.8230947324882936`*^9, 3.823094753820561*^9}},
FontSize->14,ExpressionUUID->"538a1d8c-2831-425a-87f5-0f48ab709664"],
Cell[CellGroupData[{
Cell[TextData[StyleBox["Fig. 3. a) Linear potential", "Section",
FontSize->24,
FontColor->GrayLevel[0]]], "Chapter",
CellChangeTimes->{{3.8226362283387003`*^9, 3.822636334723393*^9}, {
3.822636391632341*^9, 3.8226364148286*^9}, {3.822636632459257*^9,
3.82263666754714*^9}, {3.8226367225529222`*^9, 3.822636739164402*^9}, {
3.8230947324882936`*^9, 3.823094753820561*^9}, {3.832816202095784*^9,
3.8328162097795477`*^9}, {3.832816815231814*^9, 3.832816816102552*^9}, {
3.832816867187241*^9, 3.832816870505176*^9}},
FontSize->14,ExpressionUUID->"114a0d6b-3d4a-4189-bbdd-9ebb3d234ac7"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"clear", " ", "variables"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Clear", "[",
RowBox[{
"psi0", ",", "n", ",", "Nv", ",", "psi", ",", "x", ",", "x0", ",", "FN",
",", "expK", ",", "expV", ",", "U", ",", "FNinv", ",", "p"}], "]"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ", "normalization", " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[HBar]", "=",
RowBox[{"m", "=", "1"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*", " ", "parameters", " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"n", "=", "7"}], ";",
RowBox[{"x0", "=",
RowBox[{"-", "2.5"}]}], ";",
RowBox[{"p0", "=", "0"}], ";",
RowBox[{"\[Sigma]", "=", "0.5"}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"coordinate", " ", "domain"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Nv", "=",
RowBox[{"2", "^", "n"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"x", "=",
RowBox[{
RowBox[{"Table", "[",
RowBox[{"x", ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "5"}], ",", "5", ",",
RowBox[{"10", "/",
RowBox[{"(",
RowBox[{"Nv", "-", "1"}], ")"}]}]}], "}"}]}], "]"}], "//",
"N"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"p", "=",
RowBox[{"2", "\[Pi]", " ",
RowBox[{"RotateLeft", "[",
RowBox[{"x", ",",
RowBox[{"Nv", "/", "2"}]}], "]"}]}]}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"initial", " ", "wavefunction"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"psi0", "=",
RowBox[{
FractionBox["1",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"Sqrt", "[", "\[Pi]", "]"}], "\[Sigma]"}], "]"}]],
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"x", "-", "x0"}], ")"}], "^", "2"}],
RowBox[{"2",
RowBox[{"\[Sigma]", "^", "2"}]}]]}], "+",
RowBox[{
FractionBox["I", "\[HBar]"],
RowBox[{"(",
RowBox[{"p0",
RowBox[{"(",
RowBox[{"x", "-", "x0"}], ")"}]}], ")"}]}]}], "]"}]}]}], ";"}],
RowBox[{"(*", "*)"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"normalization", " ", "will", " ", "depend", " ", "on", " ", "resolution",
" ", "n"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Eta]", "=",
RowBox[{
RowBox[{"(",
RowBox[{"psi0", "//", "Conjugate"}], ")"}], ".", "psi0"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"psi0", "=",
RowBox[{
RowBox[{"1", "/",
RowBox[{"Sqrt", "[", "\[Eta]", "]"}]}], " ", "psi0"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"time", " ", "evolve"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"tdim", "=", "50"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Epsilon]", "=",
RowBox[{"\[Pi]", "/", "100"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"tmax", "=",
RowBox[{"tdim", " ", "\[Epsilon]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dt", " ", "=", " ",
RowBox[{
RowBox[{"tmax", "/", "tdim"}], "//", "N"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"partial", " ", "operators"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"expK", "=",
RowBox[{"MatrixExp", "[",
RowBox[{
RowBox[{"-", "I"}], " ",
RowBox[{"DiagonalMatrix", "[", " ",
RowBox[{
RowBox[{"p", "^", "2"}], "/",
RowBox[{"(",
RowBox[{"2", "m"}], ")"}]}], " ", "]"}],
RowBox[{"1", "/", "\[HBar]"}], " ", "\[Epsilon]"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"expV", "=",
RowBox[{"MatrixExp", "[",
RowBox[{
RowBox[{"-", "I"}], " ",
RowBox[{"DiagonalMatrix", "[", " ",
RowBox[{
RowBox[{"-", "4.8"}], "x"}], " ", "]"}],
RowBox[{"1", "/", "\[HBar]"}], " ", "\[Epsilon]"}], "]"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"Fourier", " ", "matrix"}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"FN", "=",
RowBox[{"FourierMatrix", "[",
RowBox[{"Nv", ",",
RowBox[{"FourierParameters", "->",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "1"}]}], "}"}]}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"FNinv", " ", "=",
RowBox[{"ConjugateTranspose", "[", "FN", "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"one", " ", "time"}], "-",
RowBox[{"step", " ", "evolution"}]}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"U", "=",
RowBox[{"FNinv", ".", "expK", ".", "FN", ".", "expV"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ", "lists", " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"psilst", "=",
RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"normlst", "=",
RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"time", " ", "evolve"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"psi", " ", "=", " ", "psi0"}], ";"}], "\[IndentingNewLine]",
RowBox[{"For", "[",
RowBox[{
RowBox[{"t", "=", "0"}], ",",
RowBox[{"t", "<", "tdim"}], ",",
RowBox[{"t", "++"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"AppendTo", "[",
RowBox[{"psilst", ",",
RowBox[{
RowBox[{"Abs", "[", "psi", "]"}], "^", "2"}]}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"AppendTo", "[",
RowBox[{"normlst", ",",
RowBox[{
RowBox[{"(",
RowBox[{"psi", "//", "Conjugate"}], ")"}], ".", "psi"}]}], "]"}],
";", "\[IndentingNewLine]",
RowBox[{"psi", "=",
RowBox[{"U", ".", "psi"}]}], ";"}]}], "\[IndentingNewLine]", "]"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ", "plot", " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"MatrixPlot", "[",
RowBox[{
RowBox[{"psilst", "//", "Transpose"}], ",",
RowBox[{"AspectRatio", "\[Rule]", "1"}], ",",
RowBox[{"ColorFunction", "\[Rule]", "\"\<SunsetColors\>\""}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{
3.82283710476458*^9, {3.8228372342161493`*^9, 3.822837286869437*^9}, {
3.82306953559861*^9, 3.823069535775435*^9}, {3.8230697023330173`*^9,
3.8230698725065536`*^9}, {3.823069924157896*^9, 3.8230699312113867`*^9}, {
3.823076297581403*^9, 3.823076470571887*^9}, {3.8230768769119177`*^9,
3.82307687918482*^9}, {3.823076911809057*^9, 3.823076944742236*^9}, {
3.823076983655079*^9, 3.823076983802435*^9}, {3.8230770410136127`*^9,
3.823077142487137*^9}, {3.823077186053278*^9, 3.823077250100527*^9}, {
3.823077343928136*^9, 3.823077372496326*^9}, {3.8230775298589573`*^9,
3.823077585528673*^9}, {3.8230776606803503`*^9, 3.823077706587194*^9}, {
3.823077738181992*^9, 3.823077763941687*^9}, {3.823077988380508*^9,
3.8230780330503263`*^9}, {3.82307807585118*^9, 3.823078081701498*^9}, {
3.823079069279785*^9, 3.8230791899644823`*^9}, {3.823079224438491*^9,
3.823079338624955*^9}, {3.823079388703747*^9, 3.8230794524919987`*^9}, {
3.8230794968767033`*^9, 3.823079508133449*^9}, {3.823079636543847*^9,
3.823079636548914*^9}, {3.82307977153557*^9, 3.823079810140182*^9}, {
3.823079898331707*^9, 3.8230800163748693`*^9}, {3.823080094926092*^9,
3.823080308317232*^9}, {3.8230803543147507`*^9, 3.823080415510523*^9}, {
3.82308046424888*^9, 3.823080470050721*^9}, {3.8230806960489807`*^9,
3.823080723063336*^9}, {3.8230809752062387`*^9, 3.8230809752261753`*^9}, {
3.823094818995102*^9, 3.823094840580409*^9}, {3.823094878934091*^9,
3.823094906249012*^9}, {3.8232395461378307`*^9, 3.8232395712015553`*^9}, {
3.8232396545631323`*^9, 3.823239737500602*^9}, {3.823239789726516*^9,
3.823239801201585*^9}, {3.8232399944862423`*^9, 3.823239998676983*^9}, {
3.823240101066803*^9, 3.823240101457938*^9}, {3.823240194220339*^9,
3.823240215739469*^9}, {3.8232402972152853`*^9, 3.823240313861237*^9}, {
3.826466896853949*^9, 3.8264668969396553`*^9}, {3.829729165559523*^9,
3.829729213892172*^9}, {3.829729251464114*^9, 3.829729257198954*^9}, {
3.829729304088943*^9, 3.829729385867733*^9}, {3.8297294195578747`*^9,
3.829729477276187*^9}, {3.8297295123936243`*^9, 3.829729524136519*^9}, {
3.8297295565182323`*^9, 3.829729558910997*^9}, {3.829729594991497*^9,
3.8297296389289713`*^9}, {3.8297297096870813`*^9,
3.8297297740122004`*^9}, {3.8297298513534718`*^9, 3.829729895341385*^9}, {
3.8297299296626062`*^9, 3.8297299869435797`*^9}, {3.829730074669347*^9,
3.829730147815412*^9}, {3.829730191151227*^9, 3.8297302500779877`*^9}, {
3.829730285269807*^9, 3.829730364960916*^9}, 3.829730402734202*^9, {
3.829730567167845*^9, 3.829730631321273*^9}, {3.8297306804930687`*^9,
3.829730711108479*^9}, {3.829884869757868*^9, 3.829884886030999*^9}, {
3.829884933902191*^9, 3.829885010094186*^9}, {3.832754458432879*^9,
3.832754490299234*^9}, {3.83275454018688*^9, 3.8327546200315104`*^9}, {
3.8327546511570168`*^9, 3.8327546648508587`*^9}, {3.832754718207456*^9,
3.832754892215288*^9}, {3.832754955368792*^9, 3.832754955509954*^9}, {
3.832755012192875*^9, 3.832755131256489*^9}, {3.832755763063136*^9,
3.832755763506695*^9}, {3.832755913327405*^9, 3.832755913466181*^9}, {
3.8327560810215187`*^9, 3.832756120726015*^9}, {3.832756163623022*^9,
3.8327561676879377`*^9}, {3.832756219379899*^9, 3.8327562426947947`*^9}, {
3.8327563937747707`*^9, 3.832756395167315*^9}, {3.832756457354954*^9,
3.8327566811476793`*^9}, {3.832756743147833*^9, 3.832756774120749*^9}, {
3.832756958596457*^9, 3.832757186177598*^9}, {3.832757262402437*^9,
3.8327572662829037`*^9}, {3.832816159541026*^9, 3.832816160711195*^9}, {
3.8328163352269993`*^9, 3.832816341061088*^9}, {3.832816709459032*^9,
3.832816709568777*^9}, 3.8328167691298532`*^9, {3.832816799520562*^9,
3.832816852883103*^9}, {3.832817110015295*^9, 3.8328171101728477`*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"f12c7892-6ad2-4b90-b34b-a8527da5d731"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[
RasterBox[CompressedData["
1:eJxM23k01P///38qKbRJWcpSFEolkpLcs0RlSRIqlazJLkvZyVKiSNZEtMsy
q31X9ha7LDPP58xYsj1RpBTfx+v3x+f9e53TOa/zOM6TGfO8zPVG7bB2M7Fb
ycXFFYL+KKE///2/Dib7WMScgOLGEpmSoQGYmR75FqqYA6kypkbPXQg4wTsa
O8VgwM5Ci9ubHxUA7+l1XPFuBBh/LFNz52OC/q8XdiUrSDD7aTFV0YMA3Wrl
sJ79TNC84n8ODpHgLYU/4pknAVkFJmc+GzGBwf9ld9k1EtB/cv1V8iJgNVnq
pIknE7pv/ezjjyOB04sGhw0+BGxkZ1msS2fC079rt7Q1kqAg1f6V3G0CvEb2
H9newoRp5evPutaQofpHuQ3Zj4B3HYnkX9wYyKfGREubkeHj3TN83wPQOe4n
1CmGgVnJ2dKGVDJ8Dq9RPx1MwN79Qxt9VTA4PG3VdIJFBgVTtcfUUAIYOqto
D4wxyP8kt4nYSwFcoSdo+S4Bdh+6bPVvYlB7qoL6z4MC8DqHuTOSgDeP7wfq
hGFgMNPlp0qlwOSa9yd07xHgPnYo5XgaBqcyT+l5/KSAxHruo/rRBGjXVNbi
JAz0x9y9+JWo8J37IRYWQ4CJYodiZRMG07Ts2gJvKjRnMWoOPyTgg5PJwa4B
DD6ovD/9/B0VEhuSBdbGERC0V2+P5gwGTozXkYo4FS49+WzeH08AP71cLo8H
B6HYp+3VIjQw/vVIOCKBgAhWzWMTERyCE7cYBujToPLRPRvzRAJUj9BSKxVw
MOfaSRK4S4NVKszk3iQCXpGr3Z4dx2Fuxv7SDxINjjOu9wimEPCeYVZipY+D
TI5LkF03Db5F1X09kkqAz7+jtBMWOHi+itzn8psGjh1td8+kEbDbVOXqcVsc
/liTr/OJ0YGZkNg7j86TA96ENTnhEJm0ZJ6wnw6Lte8UXjwl4Plhx8wLt3Ao
FLY6ul2bDnqeejvH0LkiQTvk4YNDxf43PXH6dBh7d+HGEjq3ckoMM/XF4QqX
xZlFQzoM0XiWmei8z1T5wbI3DiLHTJIvn6HDVVfa2Tx0zns9VLcBXZ8luevW
OR06zCeMJ9ag8581Ckk5Xjg8Ci4cK9Olg9xMv2JYOgG5+zvXigXisLXovHnB
FTp0zvjyZzxDz2dlYOy9+zgETQ0ZhQXTQcBv65G8TAJCMFepzOfocT1sqDtf
SYfTXEZ9O7IJ2NStqiFbjoO+QeBx9bWF4Bf73ubtKwJaStYa5bNxeOjgJdXo
VQiDve/L+98RUDo2yq4XZAEleOTZ+M9CmDeNtnHKJ6ChVfHa2EkWpHMKeteH
FMELJ6EWfRoBbAd+709RLFjWLSsyUS6GWEEzoZFS9HrTqG9ntrHAIr3xZv/f
Ylg8CZfX1xLAtfZQxeadbKjN/3xfsKcEDMW6+0KaCLDtp/IkeLPh0cHfp0+U
loJ3SYDira/o9R/89rJ3HRvSDfPs5R6WgY3WUcb6XvR4RbMsakU4EPJP+rKG
TzmkqfYNv2Kir0f7kWa/Cwd0mgee1V+pgL4FxZyqEQJuHcjC8ho5kP4Sq2eZ
VkIia5/0OEFAytvN6/VkhmC6dWjPNqMqEFZ0fe2wQEDHRGS3890huJQ21RMo
Vw3hh3bQdyKvVp2y80gfHoCzm4xPTyjlgE9IitP+mwTwRGcGF8QzIFp47ulI
eT4IBFxfE4Mc8+KN/yk7iBzzvJeqEV0AKT83D0Yix75obpyKWcsEW5zYF86N
vPKZYuogxz7URW/LUGTC6XB29bvDJCjjmdlYjxxL6ucKvGzChKMxmTxxtiQo
edayORw5dux0YI7zHSasaE1MoaciD1/beL1Bjn0VInVffceEWv1UC6KPBOtL
p8SYyLG/9lrpwv1MWIzceC9Bggx3hbw4Uv4E1Nec6fm2GoPVzRaEsw0ZtDJG
toYGErBf6WFHwA4MFHS5lobek6En1K+iGDkmvZB/+KIaBqW43f5oggx2Tis+
rQ8jINLgcGy0KQYLJourPx+mQJ9XLZ9cOAFqL9yWNjljsDNIO6HdhwKiqY8e
XkCOOf4NqAgIxyDsvthjzRIKzHq/tjFGjhkpZGsUIMc+vVIPfj1HgTn24hZN
5NhXI842d+TYg8/nj3UrUoEykXNtM3Js2uPg2oEPGIy9T7Wwv0EFvmtfe97G
EuDwY2xzRjcG3y8tKRalUOFUktG+Q48IMNs34j81ggGPtW9/ewMVHuxYXj+K
fOvuTg3hWUTXGZ10qVukwqSu9Lczj9H7lK7FhUd8OKg77D/Dt5sGW9cktbkj
3/I/fzjpJozDk6AvA5tO0yDxIpcy/QkBZVY0+Ze7cCgamxQucaNBUOZNoyHk
HuWydfWcEg4nevhZcwk0oG8c8PqM3Dsx+bdxL3LP4EHUjsoCGoRv17xrn0yA
wv416Z3aOEhlxTwdqKHB0jbj+CV03pRn5BR4Bge/r8b8ix00iDeX2uyKnKQZ
nH927SwOEdvS43VwGtx9XzmUg87fkXhi1prgsErL99fdURqQk2QTB9H565Lq
Nk1THMJSvSUeTtHg0ZHgHauRq3BD1H2NGQ73Ngzx2fygwXTIhOV1dJ58P8qY
9xIOi3X2QlpLNLAX3vJwJXJVISC2Ycd15LlUUVXiJjr0zdgGuiPfCme0Lot7
4LBzbcFWweN00Dl/x4SCHNsZtWrYKRqHKs84xkQoHfpf8Kh3PCcgg5QdH5yH
w0xPE80Sp8Nz/pFOm5fo/WVlpotvFw5lGwcDtxkVgpwO/0XbtwQ8w3FRsxUs
6I3/fkWxsRDSnjJ4L+YRoHKozGT4KAvcL4/HXLlWBO1HGz2SKOh1kiz275UX
C/g+mNuoLBdBp81HfLQYvZ8+nUqKKmPB9HmT7g3VxZB+KkNUtYqAnG/OrKMr
2PDsSXyCY0gJ7Ofds9O2noAuhTmzfBM2DA926xtfLoUHtqXMpVYC5iP9k0rT
2XD1S/zFRpkyWNfI75zQgV6HePSN0GE2NKpdDr07WQabVvP0KvQR8FFbkBmk
yIH9AhzTjsJyeGG7ZaMUTkBcXKSkUxAHzJrPO3dHV4D0EdWr10YJuCl0zD33
CwesM29EjjlUAtdvww4l5Fh+SWvioe1D4FljVSpzpArq7on1KiCvjBo2VgaP
DMCrg8XFZio5YLKmffncDfR+Kint/NOBAfa8PbJX9PPBbWK9f7gzARbLu/YK
1jOgD/t5yk2/AJLMPX4suBKwWb6gXOIfA1Iy9+kcxguguUv1Wpc7ATe2KXz9
tpsJfXG7La3kSXDCRi3ODHm1YUP2weRTTEhyYD3XNSdBw7xQghDy6qGIxLW3
bkzYKdmr7BxDAmPDzzo8yCshtXn+PU+ZUES9MPi0gQTXwSVMAnllioWNH2lm
wp+buXbPecngH9vTcw91V8jwcZGDXBiYfyl5b3SODHO/bIOqUXfdP7vDf50o
BnI+t/tnn5AB4vpJUsgrMk+UL0kZA8bBwDGnQTL0RlpV+6Duyj49+Qk3xEAo
r7i2QIYCPQyhHWmouwY26gz12WHQTd0W+d2OAuSTU8feRRAQC79J0wEYNG8c
Gyh+SQHl671V3VEEHLis73E5EYPGwkNM2RHUbwtQ9+Q+csPp8HrOW3SdHQth
htup0CLec8DjAerPEyJZNRUYrGjhdAleoEK0+sc72sirAbJc/L52DD1PBX+y
Y6jwlq0824t6bP/vrZkEG4M1RGv/j3IqzFf3imYhryQ/Rk1//4XBE33GoNEP
KvS8XjDYibzacGihuHENcgbfZqOygwYGIZE3TJBXKzaonBPbinpsg+9Bz5M0
mH8uYFaFvDJOYnzdshuHYj7OuSl3GnR+yS9aiVx6FHKi6MwhHNwychISk2mg
bHomVhL5Y3u3a0XJCRxq0t/MOpTQIOnOVGUNOn/7USe4Qw+HBglyblkrDXam
bj98GznzeLBJuw25RPJ+13SHRQPv8hVnm9B5ijcr7Op5HN7rC76TnqAB57F5
/ww6H/+8bceuCzj4hiokLkzToGnl0t6q/66zKDAwgRyboq9wnxqjwbOBZycO
ovPsHd8K6Aaol24JHuDpowGfzOoyFvr6Y6q3iGzQwEF1X3SyHIUGniXGTgfR
47XQGnjPkMSBcyBShseKBr7CNx+koveFFQtWy1cnMDjBXbp5pIMKEeJ/5p6g
73vcrLrtOvR9dzhi6mKUTYHMmKMuhqh7H6q58vgsY5Ady3zXw0sDjbLP/B8y
CDjoZ919IwkHiqR6e3Q2HRQTd5H3o+4K2JLff5GBw+xf9yo9+0L4l1lj+iUH
dWxL/ypPcRbMdvd7zW4qgqCuLaoOJAJE5o/zyFmyYKL5n/Dj8iLYuSLD6hcd
vX749npGpbHg+bfvCrr2xWB3DEY1ywl4Kn7KZiPOgrf2rfYHdpfAlxtR8wqo
u/RCuzg3pdng+XfXweK+EnCLF7n5uIGAq4FGXuPX2CDkf+36heBS6OOv86z7
RICAmm202Ss25Dbv6TukXgbeur3PqO3IQ5NTu2gDbLCQVj/X214GXbW5NzJ7
CEh4JEHCNnNA4PyfM/M3ymF/yisTzQECosZLx7/qceD6kbanuvPlsI55rfUF
hrru3BTn920OKF7oL+MNqIAVg5sXDyOvknXL+WxGB2DxnJRcjWoO7I/99TfB
ngDuo+802CcYsOPGDLcgngcmy5E8n52Q8/+2NmwtZMA6z+xbPyQLwE5woM4M
efVB5NfM9ykGNBq9N3xUWgDswVsyfsgryQAZiQEJJvC3ttmHSpBArsrtNg/y
SmXoZGuAJhMevNJkpxuS4KLRYQ5+iwBP0w9MVScmNDmfF7eOJEFlRv/StDcB
BtQMT5tUJmzpm3A5+JEEhfcfdoz7os78Ievc+JEJozK7zyZxk8GwXKBaFXml
Q9rWovebCSL5m6de6pHh2P6E+3eQVy0v6qZmtmDgqhF4ISiGDNqPt/p8DEI7
qMw3g3wAAy2ltXMx7WSwroucOoq84qroHlHVR/ur5LSXuzgFrOMl+yOQV0nj
fim/bDEoGrXeGmxDgZJYHlIIet2WbAsQ3uOPQf9qyj92JgV+Z343K0Ze9Qnt
DVr9BINx0Q+q99gUcOQ9NpyBvFKIzqRdeIf6ZwgrDROnQsx0c1kq8iqds+nY
vSq0c5+4FY5cpMKG8q88zsir6Pq9Cj87MLi6RYDhG0+FSosLH7ag+4jb/Ny9
1GEMdozWKyl/QO51r326Ed0vxRuebGv9i0Fki9K5FC4a3Gi8L3kNeXUme+sb
T37UVz62DV5yyAd93hWb0X0qcbmOdl8C7Zr7ep52ljRQ2tnZ6o06qkhmKG7z
fhyecWdb50Yif5JKPz5F9/tj3Dryhxq676IEVtLe0SCjJ/jCC+SSS010ZJAu
DlrJK+e3NdHge6LotA1yI4LbYX7SCIf9HkYWGzAabHtzsXgEndsmPPajoi56
cGXCso5AfYX9C3ZC/bOXMfbrNuqf3UYLRr7LqANdjwk8Qees3ZKJYImD/GGD
Iwar6GC2ZcP3++jc1SF24tNl9PH9d/9sXUmHNdoNP7TQufOVVZcpaLeGr75t
n/2HBm4XG6Jl0HlesbTDFXMcTq36W77iF3IpfSN5Heqr1JZFlwTUV7qr8n81
C9LhxT3BtOdoJzIxUS63IByqC8/znr1Oh+nbB6P80B4MtVvfbJ+BQz0lyO10
MR2OX19pJvmCgN5gNdBswGG+5kWVu2wh7Fqnr3vqDQFhYx+lhuZweM6upJu9
LgRF6rKPXC4B8tnyyY8UWFDi3VYneKwIlgQijqaQCbh9d2PpXUcWbCq/5DiG
FYHrFoV6QdRRHFeJ9bIUFrz+wO0X87oYznUVb7tfie6v+gDJp39YkOaS+TPP
qQT2vNh+qPkj2tHOW8Om9dlwV2Xg3cKpUthw69TVQtRRm2LV3semsiFZOyJO
ZnsZjFyw+nkPddS6yGcCAqijype5lXQmykCRvMP3Ouqo5MPhfa1KHBi2PRUr
UlEOLkotYYaoo9SKU/JuhHCg+ad224m4CrgmtmrED3WU5au/u/CvHLBQk/JR
cqqEVKXltT6oo+jKXXt3Sw7BlFK+kOyJKhA7973rzzzyZGRDuuetIfjFEA+r
EawGzYPrJDSRV+yPDua63wfAwvNe8l61HChw3EOrsUXfF7NeX34RBjyPO/Zv
xiMPWnwsX99HO5Fv9ZuDeakMUNbMiHzVng9RHa61vmgn6q5Ru3y9nwFfDhSX
OkYUwFXd3zcK0E5MM66UElvHhE1q1QIXV5Pg+Zb4pna0E13XTBgIHGfCy7by
1sd6JAh4G2zjibwSUbd7cus6E7jwxGKROyS4ocPHl4O8ihOfvKiQwAS90aWR
8nISWPk1p8Qhr6p1JUqbK5hgkvj5YtE8Cd6onrVuv4NcyrBptZ9mQpb4qpq4
Y2RwOlfzRAl5JbrTzrpbEPVGdfCXteFkqPmjHRqEvCoU2CSYpICBtPecq0gz
GTZpVVMZIcjJgML1R/VQpz1+ExQvSIFAgTPDGsgr2s0f/APXMXjGnHvEd5kC
Vz9JcRshryRHo3tmbmMgcOvW8LdUCsTVrngbgbziP7BT43M8BirrTkoFDVKg
TBCeR//XV60PHDxRXy3vunJGZBsVyrb2mPgjr4L9i/WUKzHoCLNZf8qMCmox
LXI+yKsP8o/b7Tox+HdzckveYyoobzQ21kBebT6ZstNqFIPQ39JCa5rQrmze
u+oA8irk8uzGHUsYPFeuWFJdRYPCE+WqJOSVVocxY3k9Do0RtvESSjRw+Bd4
3BV5xbfqaeK9nTi0XhkN0HGgwXhH2pPfyCuLkaoN35RxMPNssrBKokG1L37N
Erm0x1B1xhrtO5b3G/M31TQIqT0YEIP8MVFZiKcZ47C0ff9xDocGogaG3hTk
Q75o0/0nV3D4MTnOHuelQ52yevpT5MOsKSu52QGHVOYlJZo0HYJW/s1RRvvL
S23E9ZYrDoE1ikXtKnRoEL908ic6f9G6e4Dlg8NLHSvBegM6bCJjPknIE5/w
M+b/AnGoLWY3ilrR4SHvmRNiaK9x8/qP1t7FoZk9Of3JjQ5azoz9b9H5tRNP
j/y5j/Zd8tOEohA6xLwUNOlF/SO8kL7bIBmHtbiJ/txLOmTC3muDaN8x2aNH
Z9C+03r9YSaeRQex50H+8sglzuk8bipyaWtgl/ZruUKYfTV2PfA18sHqvvmK
SRy+ZwkHyD8shFIjHsfHqJd+ZMX+rRdjgcinTxtJfEWQeTpgdl0B6vC1ZTNr
DFmgdHye5JJQBELTLcwVqJeWyV2S7Y9Y4L3LMk36dDFwrg/PeZcRoB+g2LCj
lwWrLMjcrHUlMPVlLQSjXmo8+MONR5YNn1SVNCI5JcC0claYbSLgj4N31H0/
NmwLKthc01AKtoe3K1G+EvDl7aePqvVs8Hq1cCMnsQwsbVQEdXpRP6uofNu6
jQOj9cPGiQHlcHrNQ0o/kwBB7T0Oh905gD388OaAbQX8XVfNYo2g+/dx6Icj
zRz4+2jrwS0XK8HUeM1K8WkCDumXqPvsHoIYAaskAdMq6Ei212pdQD2mbvWt
M2oIHPb9tQ7YXw1c/99/01Ca+73g1sQQnAiRf6mtUAOhEas19ZFX+05ufik/
NgD5j6dXJ6nngEvR4ts1dgSIt9+L05JAXt0SWtsflgf1Kv3rmhwJuBwzEfL5
HgMkGtiaVS/zwfipPHEZ7cRDy74L4bUMuGpu+uCjZgG8scorfoa6KzHzDd+O
OQbonQu/eLulANLDTTpyUXfNiQY9M5BmgukZs8AHMiQIzGeb9aHuWoOZb91p
yoRYGq/3H3u0+7Rd/21CXvVLM/v7IphwdcjtZUYOCQ5VLIcA8ip1rMqUVIiu
070nfd0kCcYrAl0eIK/WnS6gHhhjgpir4LHtymS4fIU1tOyPduU0bWfGRgyE
+WeLlwPJcPqGU4Em8up5P6/ChDwGF7/lSH2rJcOizgiehbxqzXwr90gHA0Et
Y0UTfgpIvbG5tBV55XMuznOLFQZipFVkFTMKVCaLyVggr/Z1DgXa3MEgN0lF
YsNTCowGTyrnI69SFuk9TxIwoFaULpuwKJCXJ+vZgLyyqj5ltP09Bn29cWnm
O6kQrlFGwpBX+fSPjS9qMfCkrTthaY1238HGVgJ5pb7hR1bJNwzi20PL9mZR
oftfmHAt8opm9Cdt1xQGSl8LFsp6qfB7pvztW+RVzOnOYa+VOEy3rSwsFKTB
yaPJ+fZo91GyDmb+Q7tvycDr5YAeDbYIk985IZeKqWWjWftwCPGc2+UbgXyT
N7y5Bbm0tsrUUg/tO63QoFKlYrTL7stdDEMuLetNj2khl65rJ64sYNPg4RnO
zd/IpeOfmyRIVjh0jNmHWm2kw4/GF4tcyBnHcyPyx5yRk9EHHjceoAN1XYfw
QeTMzIJKU8wdHJy/1t/iMaXDvGbVyip0XiAQs1gXjIOamcPHKVs6DDV+274R
ObOGZ1r9HPInxHD9+xRXOmjyVP/mQefWz/YnMsNw0Pwc4GbjQgcuve7zMeg6
7odVSA+QY+p3dj/iXKWDz4VB117kpLocLdLrJrp+7IOUH3vowO3W+bQIPd4M
rZCe62i3uu4V9ohsoYEz7zhjDfI8fGRIQAT159Yyx8OKl2lwbfmk3F90foJ/
V1mVHA4LrkXv992mwb7Ubspx1F15PeyG8qc4jL3L6VxLpsNW6dhtT9Duyz3A
+72ZhcNbTrvrFc9C+KjmzfJ/jz7vvfdvuHaxoOsRz6Gw3UVQFmG3/Rzqq2Cr
dkd7exbI14xu8egtgj75w+vGighYNI7wv0piwcuzgeqUrGL4KVwlo4r6aofW
3d2rfrHg60JdxvfrJeBKcZJdjfoq9au9+yVtNihVWe9NP1gKcdSWWakW9PES
bvtbo9gwKXFGrWu8FLgFN3EdaEP9/9h+fUELG5Kk8h/ff1kGkkoTN6+hfTdd
tfvY5k0c4Gv3O252vRw48s9XOQ4SsK0tVOmDKQconWYtYaIV8EtRtugwG/XA
p5HorkQOnJmI4o5proA7nZmHr39H9525z8Vffci3lFDRl5GV8E2l0+YR6q5h
mRh7LakhiPu90VFBuwqqvy3bXEBe+XyonBYYH4BVVAsfLkB7UFD8Txfqq4AL
Bza1izLgZhv/QL1PHrjdLVMl0E7UoZKmsVMMWBmbNvFlPg+Km22XPB3Q591r
3+VkyoAuFc4T1a35sKO/pHwR+ebKr8sFsQxYcptw7SDlg7ca5taCfPsR0q19
upUBe7o+mVpYFoD3L1mvG6jHNpetW8NezUTvN2/WNS0WgHP13Q0jqMfeqWkP
t2swAY7sUv93mgTD06TMXC+0r333Dv4OQF6dtfeNziCBsvDvF6eRY21jTlkJ
RUwYTmR2aE2RIHdy3yYetBOTEyr1e34ywc81uidNkwz9Xan2bqi7Rugup0LQ
TnQjNYqffkCGX1Z/uaf+665jnaq3D2LAchntuN5DhhdHdA0y0U58FHHK4e1Z
DBp8nmSFy1OAWsU+Mo4cm3qzQ+SGI+q34uM6CW4UGDJIOaUZSUDV7WfuqXcx
4GfJ7OwppMDmiezIS/fQnuXbNiT1FANdbeOi/nkKPIqbz3KMJuBI3Z7CwxQM
hp8UbH+vQoWq+4krY2NQb8g39hxoxqDyL+9fjg8VzCPYvPoPCZA71xxUPIhB
ng+U8eVSYXA+wVs2DnXIqiXxpFkMjsuTD3zlUIGxtdVvCDlmbqr5RWI1Dt27
vvDNi6L+qUl7YIkcy8gtXniAHJP0sHJ+o0sDUEpw3Ygc+/mugf+FPA5cId93
pfjRoOFiAz8J7cHf65Q7u4/hMPgrzlsilwarDTT0x9D9zs8+KZ52GocDpkop
cW004MGiHMSQYx3hZRXjZjg8UZgI+DRHg08/3a1OIDdu0syoLTbIz7bX4l0i
dOi32vyY9d/vE7MpB4aRJ2cq/HvkFOgQnLtmRg+5d0izsNzMDQeSIEX++BE6
JBdpqVqic+q2MAE1dxzYn55mvVGjo506HiWPzk9hsQ3cqNNMr5QGPDtEB9m6
WltJdH5YU0YyzgUHywPX4IYyHRybNEPPIt8+i8/U4H7IPUffPa/M6aD30mzG
E3VXuV5BRP9jHDSqJmuxFDryeNl1ZTZ6foyCFNtL0ePalm+YzlMIBaFvfrxC
fZUsbKXUNIXDoRvi65YfF8J3Mik9H7m0wbbC/qgsC3K8ZF/FKhTBU+PzjnLI
pU43TdEMWxaobF0Xk9xRBIvCo1uLkEvTiZNi0vks8PzRnZ35tBhWNohG6yOX
thGGHaPIpS2yR1vNbZFLv3yCXJBL8zZSm3A9NkBexcOJ46XgrMozsBHtPimO
6iqjx2woddIrclpTBu+tMjS+t6P+7HriuI7JBr+MtOPq38qgV9/8tMM3tPdV
Pw71yCJPng/2nMosh3dHfPe2ob5q7Lh8tdqNAwLjAmFT1hXgWf5P7N8Qur6T
r/4sjQP5HyK8lSQroceaE399AnV7U/2KjL8caL/g1q7EqgRsm0Pr5CxyJrc/
lld3CKLtXRWn31XBj7EP40zUXRu3h50h3xuCvDpv3bcHqmF53+/Ia8irWu2b
x6eRV9Yd1UM3NXOAtCsxXBJ5pXddKq97LQNC75Ws1tfPAwbjz6yfFXq9PQ+S
lC0eBIxt+I/PJRdIcmnDO5BXsop87ucMGTB14IUoZ0U+hNtwtp1wIsBzmZ74
9h0DtFOmL+9Yyoe+24YeOWg/FkYm9LUxGTDbXT0SGF8AI/o7kj2RVxyNEtN6
Xiac8tkQqLxUAKUya023I6/CyQOjG/cxYXT3ZlbnQRIkWe3+7YV67HjaS2FN
fSYczlnSG75EAk2jnYZcyDE90YaPuAsTev65feCOJgGXUWmetA8B3ht/z3Q8
Y8ILS8/wYy0kCFmQXvnw9n+/V2Uf/tfBBHMt5+bvQmSQ0UlUmUK+TUimJ2et
wsD4wpde6ytkePUDO/ogEH38EvvO1A4MhO7QVLblkeH8+kvO48EEbO2x84lX
x2Cwmufkkznk4QGOv2YYAdH8qz/VmmFggDHEe9UpkOSfNWD73+8ZD9Zwylwx
sP9rwtoURIE5LZe76cg3/0/XzqREYeC4KkS0sIYCAfT7FsnIN3JaXUvzMwz2
BxrwbluiwKcX0x9uId+OYfcs3yLfDBz8TLHDVGDHph40Rr6tmDk4HdGAwe5d
Ee9euVHh6LV28QrUafK+WtdDezBwCVXL3vGUCjkrjPj2oE5L33uiK2AEg/fH
hrOf1VOhRZv9qgm596Ex+AHpNwb6CuI10gtUIPJZq9ejXfn+a/XNIV4c4p4F
Ec0SNNjlIJ20Bbl3skLMzn0zDlsKc9qVNJBvVwzIJ1GHLPlNLNRI4cCx5Ep0
s6ZBW0u8uDby0Ce3z6B/Lw4rktRPZIegrmMtSO1EHsY9t8rPVMFhduzvSZWn
NJDPDhM99d/P839+zgzWwiHI6XK/eiUN9ANXf7r43+8TLaeNAoxwqL50T7yP
gXbrvw3Kgci9Op5N2d72OAhEJ98VkqLDyavVOUdQj42+q5kQjsBBpJ63weUW
HUSh5kMX6qKFPKdau2wcTKQkS+Xq6DB9enXXDeSS81S5gHYVDoUmPr7kTYXg
GyZx7zfqpT9JWevVR9Dn5VW2uhVUCNp3ljNF0O5ru0fEemxhQVu+B/e+v4WQ
xd0W7Z1PwJNntSqWuiyYC32eoBNaBN8LWx6soqHrbGx9lR+OXEpQMenaUwwZ
XKf27yolgH2nkHG9iQWRH2/frx4qBvc602pyNXq8p3TgiyAb1mj2XbiXVwLi
E1WGpxsIeNVhWl1kyYb9+AbpTJ9SGBTV3RvyGXUdT6l7Wh4bXk3UN5BNyoBV
IGTxt5OAN6GZS2fn2RA7d9QtQqQcnipO0u73o+/7RdaJeuDArfQhOzusHN6u
tPkcwCKgV091DzmWA9sDP/TY0ipA+wKb2xz1UtyrP+PhqJfSpefrnCMq4VBC
7uAltAed3qaU7ZUfgtJiLU+ny1Xg+fSrV9YvAtrbb5RW+g3BzT1HOfnbq0HK
jJ/av4Reh0/ppxtahuBjQEjZeHQ1QNjsO0fkFX/dluiOiQEo/iF3oUs7BwpB
5biCDQFXPAQCo34OQnrg/BPjTXngmPPeIAztRL7mx3Jjcgz4uzCn2ZuZB3G3
Tm14e5OAyPB3wubpDBh70d3J+ZYPQwM5UduRS08ilN7ZdKCP/7H+63u3AjB8
rTUKyCXl0mtdF1YyYWflamPJ2QKo3P7poS9ySeM8J229ChPWEA49VHUSZOe8
iVe5RcAlxrVGSUsmvPxjefObBwn+jcsEhaKd+PmOhmzmIyb8/LBv7WgRCdI+
jH+/gvrKzbxO7VIJEwj9U9p502g/CjyQ9UU7kexvLuY4ygSvQ+9ayIpkeLko
/v4l2ok7gnJPZwqgLsqJq5O6RYbjNSX8jcill/XEtRQZDN5KrQ6/RCNDQYMB
ZRm55LVZsM7rOAZv2G60pV9k+L7uu4Uqcunm5vTd55BL/1p+DGUfo8ChFeRb
usilny9iZ+xdMEiYyFPz9KOA4uOQX7eQSyE7CkltERisavt8FC+nwPR0AnEb
uRRLNe31Tsdgfobnmv8fChTOLV6+gFzauXe343kyBnf5LuSeUKZCq9JDX1vk
UiTth7pjIwYv++RFN3qivhJoJn4jl5od357a24fBNLfaT6tsKvhpOJ+MQC4l
rTpC8R/HIOzB3+yANirI2B2LM0fd9dNHOndkGYOfN5NZAmtp0FmQJ/QaubTj
t4Dqw/U4ep+VM/+uiPZgltIpWeTPygtjK10k0b577z765SoN3GYGBKORP1rL
9xjz+3HgG8jr3HqfBrLi5Ox45E+wuAUzVA2H8p9OTUFvaTB207rJD/lTUlA5
VqSDg1nN3Y16H2iwWbbj3VnkzzaNja/5kD/8H8YYLwdp8D5X0LMDnddSVPZ8
PY/Dx3W32RaTNMjpxo6ao35zU7F9l3gRB0/Lu30C/9D+9Q/RI9B5tmrzLQ20
T53frTi+dwMdSBsTeEqRY6ze+EeSjjj0GikPn5elQ7PUj2kD5Jhi/zH1ReRY
gMlmjV5vOvCfoc9VPkc7vXTgRHou2sWZqmqzDDrsEnYgjbxEr0+RjKbj/ci9
ZcqntiuF8CrZWf7POwKU1Bjc24VYIFGMlzxYKARTVuznlQXIz0fvTiQbsICz
b73lkcdFYDuUzhVIR8+bZ7393kQWTOwckCSbF8Ot05lXzcoJMK4f/TyHs6Dy
qP/TTLkSuM74+FSrDu0a397WhANseCIs/vHTYgmIMDziHzYT0HUya8k6lA2i
GtZDNn2loNfvW/cc7bvpsSMxOV/ZIDFjOCFMKYOjKSsTH/USkIZb+dhJcEBw
WL/hSUQ5/Luz7Vk56ijKvu6hb64c0Gmt9fC3qoBde3ny7UYIeNietVj+gQNb
3U42yp+pBBHa9D8BtOPEim84xIghl+6fyMhWroI4IRftC8glHr9e3xu+Q7B8
72CtjMj/fk51+4VifOPgEMxv3P+Dp/Z/52WLtfoHVYfhq8cakdTTdRDUPd56
C3l1Qaumu3ByANYLxX8A3RyIc78ubHudgKKNIysSWgfBpfXtctrLXNivLujh
hPZg+rFFfrPjDNg+bKxzoycPdGJHG2ho992MTRzhjWKAR8Rmm7HMfPhXOtO1
F/WVINe1v/gbBty4IBVo8Dsf8PhJ+SK0B91CgnPCmhlw+NE/77vmBbBq5e2v
U66oo7JXuh/7y4DbTh87WxgFkCuJ77qIHFv8hNNslZjgTdNXFDpKgjuLxhYl
yLE/ClvzchyYcH82TCM2lATcpmalZaijyu/wuu96j3biL+7Gi4NoDy5SLqgh
rxT8jY22sJlgK+Qa6ClPBtLq77VzyCujLdcCFDZiIEo+HtocQIYh/atzF9Ae
pM3Qb3/Zg8FKHrE47Y9k4LOrj+sMQbu16tKNBl0MnqmwdS03UWBis/nzPWgP
vnbUqVqwwuDFoXCp5xYUuPVqi551BAF2341kuu5gkK4pYaaTjlzyYKS3RiGX
2qaavz/BYHSf65vZIQoUTMgU998nwHHu5tPl9xh4zh3jr5WhwpWcV2HiyKVK
nuQCw4+orz7djnvqSAWh+Q6V9WgPdj6zSFrfj4GMj4N9y0sq2FxNrf+JXNIc
ER68Mo28Pdq7pZ5BhaSykerfyKWLFsXiK1AXhUSJBlttp4FcfHvKT9RFvx8+
rjwkjoO2fUjtRwsaWJw9t6YN+XPqNo+noBIOjAdrXB/E0+BGmelrd+SMFy1c
Wxc5k1Fk3b2pjgYtQ5E6G5EPRas2Cvuh3afdaqST8pMGVYGJch+QD9Qkw8Px
yAdX5l+J+3J0+HHdK18Q7a+ssf1tqrdx2K3MVWVnTAcN1/LdTehcakggWyUE
h6tv4/5J29PBI+159yI6N+/cN+kShgPvoIbyfmc6zC1IVuSg82Lhc2+wINRp
R100w63pwKj+pv8Zfd6Z2+PMFWhXXvqYca1Sng4TTJa6Cfr66fden5lBnVbe
ZiLpWUWDo/Gr+Sb/81n3QtO7TTj09KhPXjlKg89ifDLc6ONb2qQFbAGHw/Wh
mo10GixamGwwzyIg4SYp/iQVBwtfXz7BGTrcbIzlWfsWnbe+3Wu2hEM++5KP
UQXag7/EDGVQX0lJEBc/abGAFK59Lsm3COLby3nXIa/amP3/tONYcGd1ouPF
M8VQ0npjej3yykQ/dKaTwYKfq+wytkuVQO3kjyd/apEnLu4nnBXY8IddkXLk
RwmIivbu2oS8wl4+/MzxZ4PWl/JZjxbk1bX0evGvyBPJ+qKiKjaM8Uz0/7lb
Bin9siZ93ej6LTx/NPg5ECPpJOl3rhzUW5KN3AfQ+4JaAYV5mgNCFKcB5mI5
FKQ3jF9GfbV/r7fPiRjk1eMt+XdIFaB4AY8+OYrcc9dgR3/mgJLto6Ju20pQ
s40/KTtJwNwknqbLMwQmChuKa35XwnCRRjUN7cF1tyZno7SHQCjL96f0iyq4
Vi3e2Yd8YwVH/dYMHAKdS5fmRaWqoWLPEBGIvMqqcZZOmxoAp0O/lXNO5cCu
Ezqe/Gj3PZCT6rTOH4SO4E7l2ya54GK/VRxDO7Gxs+8KXYwBDTO39A/eyYMc
yz7zY6i7so1YG6g7GRC9Rfww8TAP6HFiTaao02iupQVCC4MQsJxk8kcsD4gK
6Z4WdJ393Xc/TIkwgIf8wtnSKw/W2vwwlrxBgEx208RdGwZUWH/+cwryQcpF
Cuegftscls/OyUL9dlPPw2Y0H2aEV82KIt90eWd3JX1nQOQ5NfLG3ALIFH5l
RUO+6bt+t7dWY0KO3/NdP7RJoDR2ZIsN6rGK6GOaczFMcP+z0foUjQSNvzc4
56I9qBYzvP1NNxMM/t3zuC9ChqKgI5IByLHxx+dJvXwYPNhXxtF3JYMD1SNG
FTkWjuVF+Mmj/XVyfPRFDRm4VfpkC5FjGzXNvT1PYuA8Wp1Zvo4CK8OPK5xH
jskvvrGossbA6r3PstcVCuRPLrVHI8feX22veOqPgW6Ag4poFgUMo6pc16K+
+uVmTk5IxoDhXD5/cJICRvOiOqtQX9mpeqrU52Hwuml8PEmeCl9vZa7XRY5d
jOo4LYR235GwEg93V9RdWwctRJBjJ4OvHQ9Bjg37/Mvkek0F0ba0F2PIsbmU
qMMTBAbcPeGDcYNUuM799VAbckxAViHsGA8O4oF6aQ+EaZB5MvZKKnJMqo7D
VBHFYSi8tmLYEO2vQ5mR15Fjmc9NNBX3oftUz3RcM5wGzY/XMib+23ENA5Uh
Gmg3eXp+vUKlwYQ4yeYY6qLbFrrmsoY4JOCVjmr9NBD8aXAgA/nmJx+uTrbE
4ZwJyzOUhw5M8Z30CeRMsNNCt7kTDjqc8k1X99HhFH/KutvIpeHralZvA3B4
O1m+1c+SDt0O1CBv1EVePFZjNVE4zOsEXMjzo8PZWz8ZXGjfpfSuaBFMxSH6
+tFTze/o8M/djOBBzuw+LLeyuACHQ88mTRxG6HCLJsiT+gK9r2nWRCe24vBh
I1fRtEoh8OWP5vS+JoCjt+Er9wwOpY8dpflSC4EsEyz/Ee2+62LPubnEUf8s
250o31gENqaVWjtRRz1uXCJPGLLAvAW79C2xCKY6y8w5aPftzMr/4v+QBbP2
Z46HnCwGf+8NajJlBMRYq9vFdrKgOL2hSGZVCfDulh/5WkPApgG5cmtJNpjn
XR2u+lIC+3o/yfc3ol3GZWJyzpUNvWKrGaGvS+Hs/YIVGV8ImDy/qC5ZygYZ
3WtWNV5lYDm499kX5NL+vldT9Xwc2P8kJ1TZuBwo9ru3JAyi79eUYNtTMw6s
Dj/5O0KiAkJhREieQ0CDYMqI53PkGJVi4zJSAfbZBxqkx5EPipx/lCkOqD+0
e2JaXgkllq+mNJA/ZkZ8/65qDEG6bAZHNLEKkj7yc7J+E2Bwl8GnGD8Ez0z4
Px0+9r+O+nlx/09RzhC8yctwaCT+d95ueLQta/cwjHgl675pq4W/QQzBe8ir
sRMi7oHEANSYXn8hpJ8DHsu1385cQ77R7aTDnw1Cn4gYES+TC3xlEt5NqLuK
16Zxe3UNgsLG0ot15bnQ05aT9BP55pZyr+hz7SBY3ThweE10LhxwN2GFI5eq
L3W8LxJkQPinZqtbNnnQRfpw0h659EbCj6fMkQEHT79ZrWScD8w1dc2eqMee
BG3YIprPgNOav++p8BXAua+X9iahXXkoSl2Tn8GA8oTpNe9iCuDsc7HSALQr
STW2We/WMGHr12PzRlwk0BUr+ZWIvPrEGg4pVmXCM9XwoPMnSPD9fOSJG6jH
/OklenFWTBisx0PYviTYs9C5YxE59vb1mSrdNCbI3st6ZV9PAkfbuV+dyDGT
xqSzh/qYIGVgaXxVnAwPHQ0KryDHDmmdq7i7FgMpofTjuTfJEFX5gGtD0H+9
cXaCKouBYiAv35dyMnR1rttohxzTKUnUGtLEYOTYOC64igJJr+/f+4b243oR
3xinKxjoez+0njeiwKbvB1MOIMeiRBw56b4YKL1d0lBLosDYcd4If9RjOhxq
smU8BhMqRqOnBijgd+DUJR/UYxU4SezRGwzWcXn15YlQ4SVXj4DDAwLiXX3+
nK3AILX2+rPB81RYiK9NN4z97/cy71Uz2zEYODeo1BtLBRcNlcu/kG/zjbwJ
OkMYlE55RSRUU2H9L05jRxwBHjbKSjv/YCCU+vW3xW8qDMvJ/DVFHTJWuOIv
Fz+6f9mNYSBLA2FGZX0R8s3EY7YrWgwHy+17XCLP0UDI7+6fI4n//b3T1FeO
e9HOUl2z2iWYBobwNjgK+VYob3pkI9qJL8YHH51+Q4M7vDI83ahn3PQZnwtP
4WD0fZPM7i9oV4ZtqA9GvnU+nzlpeRkHB+1NtTg3HeJfej/3e4p6hpqx4pEH
Dr4Le8/padAhv+nyaAJyLO5u1tDW+zjQPPk3GwbRYSxcwfks2ner4vSKS97g
oM5n3/imDfXY7XmlLcgrreNrU77U4zDmmRZxbHchHKnoPc79BvXPyUvFjbM4
YHf5vjGfFYL1JeN0h/fo+sutFuIyLNCJzKoUlikCZSFeai0J9XYLd4m8FQvS
BR+03W4ogkf2NROtheh1GBlFwV+w4PDmeffi4GIYm+byD6pAO330deXkFNqP
V9tuj+qXwKT+PuXVHwj4Nx9VJnOEDZq8lae3b0a95FDynrvlv58bl4W4RLKB
lhwitm20FMoS7Wd/ot3XVLbK7lInG070kAnJ8jLw4VeWi0C7b8+c7JNpcQ6U
jwnVmYWXwwqK494DaPdRpYfXvb3BgZxRGun52QpwPYK3qwwTYOmfpOJaxAHn
nr7XP3dVwqc8HYVY1EtKyV9EK9YOwROTrarDPFVwfotiJvsn2jvVG4a5LYfg
c+aAcflQFXQXZD3r+4uez7/rKEb0IdBkL41fdP6fS7a8Oika/MPAuyRw8Ax/
7f+dK2+Nll5zZRi6xtYcf3f5A6h39Kg8Rl4pV9eVW00PgLB3k2CwYQ4cLRbd
3HAVdRqQNH7HD4Ki11fdPTy5sC38W1YecumCeG9Gcvkg1EaY7ZG8kwu8Aqu4
Z5Fj46tPHeL+Ngjv4i8Ju9Tnwt/nQeXl1uj1v5B3sG5sENRFA1sq5nOBdifY
84wD8nBfcTbDmAEMinZPrEA+LMg9IGuhjvp5b17EJ4EBBy5+9CuvyYfVidw1
KWg/ruAK/NDbwABV2Y+yOsYF8J32uv8N6isJyfPmq+YZoO850cj6VADaihdJ
2e6oQ1LajR13MmGjavZJM2kShK9oYq1AXhnsWH26wJwJnHO95784kcBTZ96z
EXl1c4iA7kQmeAZue2RZTYLiH6ppbsgrax/M+HwbEwK2n5U+s4kMWjS/mq3I
q1D/n4o3VmPwWP9Fkao1GZLUP2W/CyRgJGHUWVsa7bXKbwOlJDKI+eh2rUVe
bat3chw+jkE8Zf+E8m8y/BjrqbmAvIqNrxB9bY6BaolDrBZQYIv0gxux4QSk
tp8KCnNH+y7+Tc1wGAUkEk4+nYwkwFXhTeCuBxhM9dT0XmuhQLOFvyED9Rjt
auTF4ecY1J/eHP9oNRU0qSMn2ajHPNP4IqKL0PX7ONXyOlS4tuO9xijqsXbJ
a7T9nzFoJm9drAulQmDwPzsS8urZotIKeRYGlwLP/5AopqKvk0YKQ16tthRa
fDKPHHMXUywgqFDx4ae8CPKqUlJB0HwNDjMDu/ZwSdFgGyda7dF/f18iUv7o
BxEcLpv+CScb0OCS9xGe2ScEnKFNbDaSw+HrQJrHgg8NPvSW961DXgXaB10t
P4SDknH3p+YUGuxefmcZ+N+/61FviM84igNPaYK50Gsa6O7j11FA53vh84VN
h1H/3MoJuZlOA+WYc51n0fUPijdkKu/A4eEf8c8vbWjg7eya/wL1pJeQ0uuv
ExicLqww2N5FBbHuOsVp9L7wQDP0uEAIBnvuWNjsy6NAlE+MB4FcjTYKuuGg
jIMpKUFibyIN7U8hnRPZyNuCz2oBFTjcUc9b6hcoBP+2uJOjaPdxbhcfEl/D
gqYz/2ijPYVQ1MX0v4X66sLm25f8z7FA7F3EpqjMIkgWX2vsgLw6qLrewzWT
BX2W9Nr0W8VwsDentg95VcMXcnVhlgX28+zbI2Yl4OR8SFLnIwGz7isPb9Jl
Q+cfrZClI6XQYcsM3dZKwGUrwu7jY7T79rtEkdaWQZagmqtkBwFXo88Szjgb
Frp2HiAzy0BzPtoK+0bA6Tpy9K59HNBIbSkszCuHkjFz+SkMOfDv3YtjARzA
auv2c8Ir4MXVgLnMEeSzXZndmQYO7AZa0rZzlaBpMifsNUXApfMa0n2bhyC6
puLWzR1V8PT8kbPhcwSca5cM5rcZgq3ZHGHWQhW8io5tGUNeaSt4i6wqHILf
mu8pxi7/86ovPHprHe8weHooy2+arfm/8955+VD2+WG4vb3N2V30A/jLtlmk
I68CwW2tzswAuCQeDPt+NgeqXSzp15FX23X/gcj9QchUrJrgnnwPC1qnO9eh
fef/Y23y4MwgPNheqbuJLw8eSwY8OIa8ur/56FeepkFYPrNGayYtF9w7n9cJ
I5caSVelXQ0YYLnhWM4drnw4GhjeaYBcsl+TbXfxCQPm7+wb2/0hHygn1mQ8
RC7hQW2+c/XIMe4rxd8MC0B/Q6OCN3JpS9rvnoQZBiiVsJ9+rimANiyq7PJ/
f49rfscRpe1MSIunV+FiJJh3sK4U9SSgZSzdTlubCU5f3pnwGpPgtP76Qgkv
AnKfNb1/4M4EddUYp6xYEiQv5P5Q9SGAW8P4QVomE/Dyvh+vPpGAN8NkvR7y
qmGDkkT9JyZcNAjS8RYgQ79ms/gzPwJWjn+3FeLGQO6S9LaS82TwPO55JDeA
AFjtvX+PCAaHFdc733tMhtm+OZkF1F1O2XsZ3w9iIPHvOX9yLxmmsuyfOYei
z3soXtbdEIOOaz+i/aQpYDvO65CP9uP0zI+DlfYYWFQ/mjt/gwIuZ5vXDaP7
K9xAPjktGAOafcbehfcUcMii08SRV6QH8ks+KciTtFj7dIICA9bblgjUXd6i
mqOsXAz4t4v4K8hSoUO/JLYbdVfr+Q07lWoxeFZswit7nQo1km36Iai7Yo96
3OnpxGBUSPgsK4EK0TamWfzoflfa8BqXHcZgWWrPn3+1VBh0XxgfRI4tns7/
loC6y1kn+9DDP1TY7rcj4TByjLVi5ZrctTjkX1vozZSmgWJswk4N5Nhu/chV
qltwWMW/upZXmwY5P1pexyBnVpcPxwxK42CiSz7AuUmDgDb+2nLkxjOtkh0H
DuLwPLHmp9QjdJ2M8tFXyCtsn9g+u2M4XOBuPvY9hwaFuhnismhvRqkfX6tj
gLruXub8l14a6PBO93eh7sLKM9mx3jg4Wx233H2aDo3VC0Iv0E7UFAq9ve85
Dvd0K6IkKugwiucvMVFfhc13GpC/4NBnJPHFTqMQ4GLp95PIpT2UA0wubhbI
fa788ehDIURxVXIl5aHdEX5+Kl6dBVZbikOz7IvAAx87GUIlQM1sexY7iAWK
+85eENxWDHLlHjdmSwj4/PjeM7kGFny+Z1ZIZRZD0ZMjRjvR7jvfPrK/Qhg5
k93+aaa0BAJOzljUN6D3I+/gooPWbOgbbEyJiCgFVW9+QhntvvBQw8k7dDYo
GBiGit8og281HSc3od3XQ9IfdF/BARv7lF0RR8th/d0LO0kDBOS0ZRm/N+DA
j4Cro34rK4B+v+SXDhs9P2cWLngnIa/4NT5qtFbAoizvkQtjBER+PCL8ZogD
4YcPBRa9qISfg49yJ6dRPzSHFqUeGIL195I7vztXQccmJXLNL9STj2/vlgsY
gihfSnyaRDWEbTK4YruE7uvgxfOx9ai7yiwSvtz9n1cJ6rGmD9YPg979C76K
0v/rK59G2QtHDIdBLKfzvfT3Oij1b/Z/jbxqqhQzk50dgBZ66sx5kxxY8+XV
odkrBIx+yvh5PngQGlpPSru1v4fZSMZKks1/vVpzXZCLAWbSJ44XK+bBgRpV
1zy0+/ZahDJ0tjIg9ayThLhLHvwdWSsa5ojux43qN5LDGLAN5zvcnZAPZfYL
lB1o96WFUAuWXjPg8aHidaz5fNh7RsdGGXnlv9T08Vcl6qVW6qdtRwrgjISC
1CDag6W8kxe1OAwQjWgSevysAFYT4/l1aA+2mWwpxdYz4fI1uYC6NSSwsDOS
PYK84vLN1J88iXppc/3v1+dJkJfiILX9v59flUbLVUYy4cUWmYGO9ySYlK9g
vPQlIILtfT6+ignMGNWmHb9JcGWQE++FXPKXlkl+usQEr3pjdY4RGba3mX/o
RC5dmf7cMC2KwWfr4TNXkskQPdogCsEEbNaLucmjgoG0/st4fpwMS7fPr36A
XCpekS720QiDE0/klcRkKbD92Hqdl8ilW3vSHhgglyqKv1ZIOFAggI8VWoFc
slAi/+sIxCB3k5eB9BsKBEq1yM2hPUiyTbElJWFAEZeMahhDe5Ak1T+EXJJZ
NaDpgVyaMlHT/rWLinqWJLqMXNp9bU/5Qh0G2dZHRhftqHCVr+XdEHKpydVz
Ue8bBh9FLt6dz6RC9phPWx5y6XbPQUOtSQzSLU5EnutG/tzLhOh49L7Jejsj
uQKHXnzlWuENNGhv9V5WRv4YHUix/CiEg/fYn4h2TRr0qD06YYicUfe4+sNA
AQeVAZfbPaE0oAU5dign//fvI7zOpWviYH/rikN7GQ3mJ8yWFpEzKlvoDUkX
cODXT/m0b5YGUzvy16YiZ27m/V5ge+KwhmHHPaJJB/Nd/t7laN8Z+ZfEDEbj
EPNAT3jnXTpwBjfvOob2nfRA2dXu1zh8ejancvwLHVhNvQ5nUBdtP7VqbBJ1
0Zp7kUab1hdC6q/VmuavkMM4OUsKw2HW+bOwuFMh9FQfk2Agl/YZR1x5z8uC
P+QLC5TuQng7vkrJBrn06Fv4aQs1FuhlhmcmWBVB5YC6xEkKAb75AQpbPViw
5+LPyPC5IgirapyIKSZA4RBfUkgRC6aOGpHE6MUgUZAb/aySANtijmrIIgtM
wzBdcdcSOE6N/pKEOkrF+agh6TQbjEMeT/RqlYIyc/m2DuqowqtR5LgnbPh6
5fy+x+vLYOdvvpnldgLKy0dZ/Bgb3G6/Sp/uLwMnalcWHXVU+shhfd29HOAz
t2nIeFsOWrqTT0pQR6nATqmpOxyQmshWfx5UAeJc36ZpqKMY26+/VGnkwJj8
rpdPz1fCyJzc01jUUY/0mvYtCA1BNmlboZdMFWyQdtSpQh1FLlwKf243BM76
X1JHl6tgV+nmsTnUUWlVknUhqKOSss7o//n/ddR9ka0n21YOQ95g6JHgrv91
VLJuZOpzvWHgcp9gZlXX/d+5sP41L7NHwxC6npS7qvEj/P5Sl/H/mDrveCrf
PgCjksoIGRmRUESRCMm3VKJJycjMyqqMyKgIWVEqOyRkjzPsmZJIZEZytnOI
OJkp67375+f99/s5n5vOeZ7rvq6nx3MwiFd82i2ZW2eHYfdX1usNRgUQ3d9h
W454tbcneR+LPwGKtvaH/XpfCCpRMynPEK9euzQGOK0QYPu7zUxfuWK4Rfkl
ke6I/LPK6HHLCSIURZh53KMVg6L+lSQ+xKv38QSxXl8iVN195nbSrwRMClKF
spxQ54oEdnPfJsIwp3AWxqoEnmxjJKig+eXXkmFnHYiw/U36N/FTJaA2IY6x
Q+uYPtMIngwkwvj9ntGE6BJ4VtaW64S4t2HVrlW1mAi+4s92tm8uBSlR4cgl
xDcqOrd/Mohg/pPVrju7FKyl5us0PdB+fZLUWXOQBL88D0beUcXAu8kIjx/I
uygNSvkXghHfhF59aHuDgc4zp43MkV/t2R9ZGf2FBIMvGHgSNxYyfyjrhKEe
bDAoMD67jQx60x5iD29j4X27ibAN8iiXFC6JE/uRL53p/ejbgoX7zi/yZBCv
qn33vDQ6SwZP788b2UVxcNZZdPUp4lXn95/azg7IlwrtLpbZ4+DYKXwyN+q+
CJF8pesPyVCFIWztwODgPQ4rroU8yliANN2eTIZqozgerVkcfK4e3RqBuk9i
o2P+YzwZpJKdm89q4IH8PuVpOeq+b1OhngvtZFApfkOsDsBD/+qKRCrqPlH/
32WnKYhLj+2Cy8rxwHH9u1Yh8qWxhtOJ5otksP5VLBg6h4fJpTAHL+RLwcbq
c1c5KXDtMLc6Sb4McmhvbHyRF31i/D32V4oCGG65Gj+nMqi6ZBd1HPmPiP9E
zhzqtSpx+eW+9DJgf2B8aw7xKgk/37ztLAU8fr/o/dBTBnx9LFneyUwwCixK
H79GgXFad3gRSzmsfe/PMUphwpzQhk2l9hQ4tVKYAqLlcJdvu3E4muf64vRG
HSkg/2xnnf7ucnhYeEBEAc3f3TpgN2ZLAZGspmwXwXKIUuboPIa4x2K0XZB+
iwK44T3Tm4+UQ2LwhjES8qvxvbOuA5kUWOQO/WvZXA41ZWJ/l7IRt3f4HN89
TIFLMkOlWjYVcPd4cjqtAJ2Posr3r+6igsLD7eaWOyrBYcdO/h1YJvTSeARr
7KgQvcyhsL+7EowTDIKOIl5RuBaLmXjUgxFx3x0Lq+DdUPCAQiPa78Y3k1pY
aeD7WCZHKbAalPK5M5pamLB6Y0tMizENekJ8Tt5xrIGJGVkroU7076oav7kh
nwZudMXuw7q1IBFyIORjHxP6nkvmrc3SQA3H3anBVwesJSwTL76jfTDNrl79
+AhY8BmMpFLqQD6QsAlPZUKX7UEO3tgRMPpyvXqoph70JJPYR34wQffywgqW
PAKpUkYRmgkNcGyDS3o58qhgrXtaMop0cOlTIRx1bIQj0jVEk8V/faQwXhtM
h8FB430xe9e5lLvtxR/eYTrIYWQupJWvzw87fiIT9jPAhNNI9NnvdY+q0jBI
4g5nwPTU/MjW6A//zVu1FjK9yAzo/Ljnagh/K2hI1zfVIF5Z1HswJxGv7i44
d+0zKYDtw/OxvohXLl/jLIruECBZz37co7wQ1BN1fgshXrV6ltPezhDgh5Zs
RQBnMZSojuvkIV7VHmEZzNchwpH8JjKDXgylA2XX/qD5y0MWx5r1iRBYzGah
+acYfu+y2n0fdeJ8Aa/UpatE0Dc+vzFTuASM3A/7tqBO3LChaIXlFREy2Xn2
SFNKwOVRWocS4k9RaKSOfD8R+NRIJUF3SiHm79FtZ5FfhWtsk9LYSIIE4q3G
yLlSyPJjuyuLuJQLEapziiTQPfdx51YVDHBa8dm+QN6lvC93ZfwCCdJ+iTAf
WSG/Wo0Wt/JiQqYM91KRNQnkMxT1S3wwcG/ZnpmC5q33+D+yOJDg6X3HxMn7
GKjJcf0ci+ZZ32/4i9uTwAhw1lX3MMDzJ8nCGHXlQ54rHqcy0TrWv1NOd2Og
R5VY9gB52gHWLtqDNRLwmGy6s9MAC6lNRYbD95H/SLwqCpAhw7Nq39nmCiy8
xfeefRuE9ndCiejIaTIscvgPTHPjwGVtf7wH4lvGoQ/ndtiTQXOBmLPjOg4y
Lgxnf/x3v4QTb/bpB2TQSj4VapqHQ6c2bmAv4ttTg/zsMdSJImv49O5fONig
JnyDG/GtX2Lt+5ESMiRNqkp/lsfDMchsVY7+97wO7LJSC/K0LB5Wdjc8JCZ+
CfuOfMzy58arXwcR32ztzzWl46Gq2bHaAvlYp7evUPkPMvDpmrzN/YyHa2Xb
G0SQj9W+ePju2Arqx9aQqA7WMhDaL11xHHHveE1TifhWCuhxfOLtly4DmwA5
A1bkaQe6xIVj+CiQwuFg23q0DI7fTc4qRnO/pyWKO0UoEJ+qqmRoUAb1o2O1
q2h+JEbRMUecAl9t81f+mpXBga9UZiDyOtsIefVHByggK0BNpYSjThRo9KxE
vBKxSp5Uv0P593dpRWGnEZdeH7vv/Rp1E7WqLqUM+WH6xrO4uXKIi8obkstF
n2O3GU/sHAWIuuTaiswKUGRTXeNFfnUCSxttU6MCi1dGPsO4Etp+jO/yQd13
QzerwwN1n21Ae+bwzipYu/njSX7Nv+c1mfAc+EIFjhdeFWHzVZD7vGfPd9R9
M/eCgvslaOAZX6K42FUNNj7Rydfb0PvWPJh0+A4NNki/GgqrqIGCF1KqKl1M
uOWSzJr3lgbuafaZEWG18OnohGfUAOqvX5cx83wjMKD9eMzHsQ5c0z73xBGZ
wKDrPaFfHwElPn4LrWP1kJC6lHyEzgQDzdsT54pGYNeH4OT8zQ0QeDfL5txP
JnjuLlV+szQC6doNAzGkBpAMUljGzzLBrfRcfPlFOixKx5NimhrhpGhs3uBf
xOEDXRc/p9PBdkahrebCOpcY7Iv3xn/SIc22Sjjj4LpHfc0eL/6gyoC+IuWA
S7DuUft3zLyxD2KA8kz6ho/m67yy0k/zudTKgKgUC4d8+4/g61sx0ox4lacl
rtU9Nwz9gj3wwqwA4qnijUcRr4qGnsaa3iZAWNjshdmcQthk+SNaxPbfPr7g
+GSYAHv5l/oEu4ogv7iRZufAhD/nYnWOyxLBJbF+NikJ8crHf7se6sRXVp0k
Oy4iXN96rXnOqBhEcyOCmpBHGSc/rKzyIILGbYNppkMJjJrlGb9EvpR3r/5M
DpYI8h+SdUn8paAfHKl2CfHKd1P0vr4BxKtXQiuNAaXAcln/gyriVYNGWYQn
GwlSU9LJZUzEsVs4kQzEq6+2zzteqpPgs556RcQJDFy67JkfhjgTZlqnqGlH
gnm51b0hARhg6FG/M1AnHt4+KxOURAKVZHW15fcYuDb8MmYAdeLH8K4e1mYS
7HWvJ+1fw0Bbt/PXfD8mhHTgk7/9JIGYjTK1Vg0LxAVHeVXkXR1ti3vqN5PB
+8tHqwEHLChyhn2JQf3o6O9xtF+QDPb1E81jT7AwQUqq+Yt45fP19asuWeRF
40kp9jVYSLPJbfVAXSl/Qqfg2BEyJNaeyBMYxUJ3ZIYtL/K09ifeFz30yTDa
ZBn/UhgH26x9pn8Ho33haVDgWysybNvYtCXhMg5qn93S/BTKhNCWdnsFLzJc
8znGKxuFA9aBXXht5J4b1f9gcE/Q71MhmbSlHwc6b6x1ZFBXno/DM1izyTCm
cHLnRh48lJwkzQmgrvxZ0/nhXTUZXAyuD6mcxQNqklx2xDFvg9m8kC9kuKIW
kGP3CA/J5w596UT+du+p/eL9f8+3eSuW1VCLh7r0HRRpxDHKxovOpYhjlDb/
92wbygAzGX1a7x+v4oYL8gQosBJb+0frVBlsO7b9zLbEf8+B2YLvBwo89qjz
X6kog8pr3yxPp6KuxNcLuvtTYGxPGP22cTlYQv5TM9SD4RFW9vvzKMDt/o6H
0FMOgRYpzqtZTIiZ1TJm76ZAUowifpNOBZy5Llw9h7i0Krga77lCgSC88XFa
TQW4paqLk4qY8EBAzPXpYSqEyX4J+GpQCYk4B7l25FFXBZN6GlypMOHF1F5m
VAIzgLnpGvKojY711NPlVKg7KTu1pbQKxNtOfchF3feulGt0BnVfkqv4pau3
q+FCydrrMdR9kkHvik5foMHq35tjSedr4EoGC3cI6r6dU4NmFxNp8JdTXnuz
YC3coI6xn+1FnlzkHXqWRoPLGfEJzSO1sH9ug862IcS37JlL7AdHIEAD96kH
VwfFVsC1nYKO/4KDqZX3R+DivvOsUxH1UP3CSXYQdZ+vdbbj27YRiL3IwHWY
NEBv6XhmMuq+gyzOPIECdLgXJI6jyTTCndcvtqWh7tO+daJP0p4OQ5b38/qW
GmFand7ehLrP1lb9pnoZHS7uemlJclnnlUt6Q6o7CwNE8fa5HPXrvLJJrJ+g
nGRADn3+SvCbdV7tHihwr0XdZ3z9tjD50zqv9h711zrSy4CNb3Nq3uA/QuXn
0s1fEK+ma1sjyuaHYf8RzdIV8wIwPQbbtyBeqVup8Y65EKBtZFySlFIIKQqf
R5tskBeJHlS3aiBAXIvslrn7ReCXYvzkD+JYxxxuRfAXmn+fvKG1qRh8tHbn
nEU+5sDktlP+TQAh0gHaU+FiUJXyrLJCflWqwKP15jIR9s3xV9jyor6zaJey
QBxbSe+sGnAiQs9eSPx4oQR+zJl5c6Ae5BA81MW8SwQFY7mVQZ8SgE5nG2/k
Y+fYDZIYiUQwWenI7eoogYYn3573uzGBlTU4VqGDCEm/VZvfWZVCX9wnywXE
N87hWxqG/KR/fvO8gxv50tWSW/sRx0wNygK0zEng9TXvULY7BsayH2e6IF/S
NSvYui2bBB10662YXgy8MSjyPYV4Vb51OWWRRoJ8TanyXHks+P/+6LEPcSlO
iqfOno8MaWztiX3BWGj/JseVizpx9uStQosDZNid9fXCZCcWMtrxf2aQR/3+
6moupkeG06HyU0s7cNDla/D+MPKoMVqKg8t1MkQe1zTtN8PBW/5znJuRR4kL
s5776k2G9N0sNg7PcNAxv13MEvGHVxOyN8eSwWblN+QP4uDLX/MIDcSfwaft
KnTEn+93eyJv8eJBM+drkDbij9HFX9aRtWR412hay3EJD0bY99tlEH/G3qmm
DXaRYfUyq+GGSDwcvX5YfRLxx+SJ5c+eETKwbPx+3qoRDzImLIdmUD8W/jqz
9+4SGR5ZPM9ZXMaDjl9ZYTjyKKb73ZMaXBQoWfIt0VcsA8XWmbYE1I9lrzVV
L0lTgG7a7bbTrQxsr53ByCEu5WKM8uVPUCDT/rN8Wk0Z+OQ5H1NDfWdubM95
zQ5132u9kVdC5eAxK0UaSkMdFzQXfiga9dquD31NYeVgsUHhwQHkSzqmHvUP
sBTIcLv+WOtnORRLYXqnUd/dSvHwKv1OgZx2Bvdm6wrIs2Fbvp6P9tl9HL0e
XFS4qpYY48yoAMKe5TT1EiZ8WJXfjT1JheXL0txs/pUgkCGZcaKMCXenTnib
h1NhsPlNtNihKnCi3aEPI4+qfTyXc7ObCl54+sfspSqYdfh4lo48Kjfj3tUz
kjT4aUckKvZUg7aSy6sTyKOyBCP4Oz1psKMuwr4SVwP82Mc6bV/QcdhzT3pj
HQ12uT7Fj/nVwpU4+hNe5FGtT47oF3CNAP+JISke0zpQCs7MHiQgrk7yVeaa
jcDWU03jX2Trge1VtKTNCBPOrJlsH84cAXu4F7M8WQ8HtCsJ5RPIr950MYTn
R0ArnbJa19EAOW+Dzuohj6pTS9qzqk8HbpOwgqqyRmA7FhSYiTzqb4g/381U
OqQ7nCgLOrvOJZ9STxcvJh0mMRL7l0+sc0mrS3xyTpMBnoHtQcP261zi5j5+
3D+GAS5bOdIe16xzqa+44tv3IQbklaTIsk58/G8OXD5PLymMQkHLztAZ9U/w
WzJf/hvilebRO/2JC8Pw0CRzl5NVAaQxb4q+s0D7He3RIsaeAKZsfAILkYVA
nzh7iRXxSjv/TnhgMQG8rd2auQyKYIXvqH2cFRMS3hk3RsQQwLXn407BP4WQ
k2io8Nsaea9cm2ZqEQGEYePVrAtFgAv55Nb57zqYY/OZOjYiDIb6Pv59pBhw
h+jkN2h+yllQ4OAa6k22wY4LB4qhYekVVxTiofM9I9xlBgGO3r2Tnj9eBEfG
9oYcR6/f6W4neHGBADUNLV4ygsWgaMcWtoq8ruUy4aS1OBGkrxQluwcVw9jl
9OcJyAPftP5owsgTkZe1SBZnF0PRtvl2PjR3MzxMkJEgwqa4e76nHxVDVD01
4/y/53o9PveGfQqts+UkUbqqFMRXfMPuIb6Nvd9OMbYlwYdl/V8X/DGQHVrB
Wop8bHh2d8adtySwsv3JYvIXA1ZvT3+7gbwrZVeu3fwWMoR7GnhTXLHAetzw
qAviWNNb+w+4/WSY3vt4rfgjFpT5vUxMkUedefV9KPo8GX5+uS26fTcO+vvH
BCiIYxHSNR4LTmT4cdmM0+oWDhxuZLMphjEBhEb2VASTwXUpAedWhoPUPWn5
9qgHbzf4P37+kgyzThLM7Ys4OLmDYJCKelCz9uDCrTIybJnec7j8KB6aBdL0
X0f/u15tKcPfTgbbK5M3L/nhQb5qVf4q4lVcx0tZeSIZeiuWF6AYDz+tI6Sv
xf77O9Z0q845Mrx06dAbGsfD3K7iR+nIozBXglHbU8Aq6nXAQ94ySDz2POI+
4thnAZOXHzkp8Faa7rFDoQyCI8N0nNGcs+35hZFtFBhie7iWL1cGZ95/sy5H
6yfI9x3rWCTDpPLyxep5PGjXE4QkEW9ZFazcDteQQdkMx+d8Dg/1vqxD4ej3
1LMi3LAlk+Hz3U7es3g8xBXp2Z5NZ4Lct8nWHc8osCm+KWRbHPIxA0/R728Q
34qfTzPoFHhSVKjb618BavLCi33Ir6YMs4rEkV/1nrjN9vpSJdgSWQKiUPe9
sQvhMw6kAmdsaLm+WBWUc8x956lF3vIQtyW/lwpKEg43KllR3znYKXa/Q/55
4QhHqjwNXn6fjNafqoa8pfI/1z4xYbRIMloykAZVESY82n01sJ8rvrSwGx1X
+nhWmW4aGPS3iTrga2Hv78g3LweZICV+qebnv7+XSWvp3BheB08EvAqx/54/
vO3wIetbI4DTlU9WtK6HhoSxCHbkUYeKgrWevx2BjZUWtr3aDXDdeYR/ZZIJ
VZsuNWVx02FsXIx0lL8R/O2nnosjj+JcCnjz2IoO2mRTmeyfjeBtGuLZhTyK
ev8GZhh5VPqhid4G13Ve6cpk1lmyM+Ah6cbk3Og6r66I+tcvGDKAv7rSJXBb
83/z45uVqve/YUCoUd4nWceW/+ZraZHHQv8wwP09O46rrfW/uXSr2hzPlVGI
KnfWTDdsBzXvzAs0xKuwGgmpgN/DQLy79UmPTQFcP/vU7SniVb2jgt9xGwJk
2mwZo9wvhOLs1xH3EX/MDjVmzr0mQHqNlFiOUhHIp/tdq0Fz+QPNt/RyCcC4
96JKGooga0ytSgLxTXLv3ZtyGNSVb7P5LpgUwY00819LiA973qW+faZChK4H
A/79dcXgvBQ7WIDmtz8eN7+rQATWgIS1h/nFoPx9QLYGcYl+42bJPAsRak/m
FUmpFIPUM7lVFbR+g0wn+y8sAQxZvad3WxSBVwnhghT6fcqqKn8tJCN+Jvop
j4kUwfErxR+9Eff67q8IR48QIEItu7GPXgS/hlqnhxwRP8vMTETOoA49/4lr
aboY9i973vqJ+tTv/s7it1VEePltqOnQ3lKgfbeOSXJH57vg3o1hu0nwR2qK
a7cUBh5P3RnajLrSIlHl6e9QEmi+r3VzzsfAaa7lvk++TFDjmGAz/Ib4RssV
lhPDgkRE58VdyMc2qVQJzPKSIaaS3+bVQyyM2zHPsKEe3IcNCTU/RIaIq+Yn
P3/Dwo0fIicYiGPCdS2z7y+Tgao+tvePMg56cgsSDFD3EWcZiYM3yTBQ4uqZ
G4AD8Dbm+YA41nqeSrOKJEPf65bFqBYczDgEb/6EOBZiGse5IYMMTacnJGU2
4oH2fsxpEnHsi0Dl/uVKMuxhhP6xOo2HVZOm0OV/98/rJLPxoe6LvVV760Ao
Hlq1DwjQEB/2a/mevo68y+ByBr9cAx540jb5siNejUs337m2TAY+40PCdmt4
+Nv88/0g4pLV7Ix/y3YK0N7J+82qlcH+hz9N0+PR+xbjqzB0kAI6JeFnHj4u
g++FH4oPJCOf98RyfTGhgIKd3vyRxTLwOFr0yAjxxztt3CsM8eeA3K7W4/Hl
YE3UqRDKZIKIzsjj8loKHBveR2fnqICp4e9Ha3JQ12eYJhUxKWCgYdHkHF8B
qqdSmqoK0efyo1OqcC8VSh1WhN4rVsIV+7N1Wqj7tpqTfj90oMKukuiIDV8r
IfZB1aG5StS5j89od2GoIHggvGk0swqE9GOWsKj7RM5SHByWqajTBnuj3avB
fJN/4OmWf/ctnBs2NqTB27X4d/kmNWDWfSbmUQfiqv/ys4xMGvhUpuH7DtfC
Z98P6QF96HPxft1c9IsGM0saFQe21AHlgfAdx+9MqK46yXJUewQSJs3WlIfr
oPNb6EwYlQnuzpEEqScj4BnScSilvB6WN5goDv5A78/nChlF8gj41JIFu+Ma
oFk83CT9F+rTQ691JBXocOfW5Q5vu0a4djzstvwiE4TEboY0BNGh4pDV/kHp
t1AzxMLvvMYEFvGOa4vddODlfMRl+mKdVxODhU4quxiQTuE6lxC3fv2cr9Vm
RNGVAdFbDv2VfLfOq4Lh7prpSgaQZe+RJKbWeZWW7qjYunEUhj6mP3kj0rbO
txvzOT8NR+GEt9B1G/128G576T6JeNWl0X7LanEYDid5rmjZFYD0G0y9BeKV
/njPny/mBKA3sNR2eBTCkS1r6UzkUZpaVh5h8QR4Ne++sY+7CMLKFnTZEQfC
Nr3q+DhEALce+YUT7UVwy8vRzxF5zuvhrg9c24nQ4fqc77BFMXj7uH53Qj24
o6gmIuIKET7tuCfTwV8CzlPH70kjbuQ2np3ddYQIcqy+6oEtxVDndlCwGb2+
T/adZpg5EdY0ZbY/liuBCCm7kEDUg95hSyNtSUTglVQTOtpVAmnH5tiLUQ9W
svRZvmojAu5mPPvOq6VAqazxjES+VJdi4HFtlggRa3j/rJZSuH2S3t2BOrG5
/y17Mw8Jgu8M4xe3YMDzobZWO+LSVHJQyIIMCcrve0rv34cBjjtDenb/ro9d
imHVUyHBrta1G/qaGNiJ+T1Z64nen2NXlXwNSdBqONFxzQ6tczFHUAd1pS1l
aeB+BglkVp/s/96JgQGMpMlOf9SbY0L0tAUS3Kub1910CgsfHYYs4u8z4QrX
UUkbKTLMCbvdNCjBwtk3/JPXUD/+tFJL9TpBhl1bxQsIbDioCLvXORnMBPbN
Mt8uWpEhWm2l28YQBy0TMsSTqB99m/YoB/mSoWpLbEl2Eg42SSxOJqN+DFie
iMI+JwPp9drTMRIOcg+rKOBRP9LGIlg1ChBnrKblJyXwUFhZoLUF8ao57omt
SzMZRNr5JZVv4EG1kJKugHhlMdkbZTdMhiz9CF7XPDxsO0oPbkRe5KM3P6L9
hwzVcd8iphbwcDCw90fTv++/0PW/vyxCgcu/d+XVXi6Dp07vwk4nMWHkN341
6QIF0t3csm8Pl8HdY6MyTNR9YSadBIEYCkhv3WepEFkOSuWHfOpQ95ULBNyt
qKSA4U2Ni3tXyuHHm1fdXIhLx9UUQyTGUA9a7tQiBiFezQiRMQWosyyOPBET
o8I9wcQbhtyVQH1eIE0rRftj3cMT1sZUOG3zXau/qBJevLrJiylH3P6a9OtG
IhWEH6tSWyyr4PmXN3Ev6tB+cWmPcPYIFap6Gr+NH6yG6BDpOO/3TOAISDj1
RZkGYjmNaWTWGgg2KjkWijxqoOW0KjOIBgs6poR932ogqPTKOTfkUbH3yk9b
ddJAur7CdKCwFkp5E5b3II/a+BwnUbpzBM7Cmbh3vnVw9keH4jyRCTltRJK4
4wjsY9cvrdSrh+kEv+UpOhPSCzRWr5SNgLRr0dsQ8QZYmtE6swF5lNz+LC78
BjpUKQ7W3Z1vgJb0ROqDOfQ+d7t5J5nQYQf5kUntt0aQFH0syII86vS3wy/r
CukQXvmp18h6nUvlmKmrdSt0qF0ZTfXMX/co/0Gi79GzDJDmnBgP7F3vPpaV
Wef9KQxoOOnb4Cu4zqU9QfdKxkYZEMK7QT1Mf92jAvVmltbURiHn4obflmGf
/psb6WhwRYaOAlvGR4vpys9QJh7/4jfi1c5qn9oTf4YhqmrILdehAG7kNRtp
I165uHXxy5oRYNiy1e2JSyGA4KUlb8SrslNG34hRBLjm8bT963QhVE1dwm5A
/iN9x+rs318E4Fm+OpCzuRjkJhToOog/rccufGvVIMKYLSasoaMY5jt8440Q
fwyK7ZhNhkRI6C3UXeQugatmlY/9nZhgI96d/tCVCLpRd+nsV0tAoeS13xvk
OYHLTnGROORdo6wV+oKlcDLQ+9XNm6gXIp5wPxgigi23wbm14FKQyDpgaIX4
Q9SwrV3bRILt0pBu9acUnFt7XW8izmzpUb+4/zAJTgzjXz04igEP1vJzu1Hf
He7iOGh2DfHnw9zfW7cxAMd1v1xEvhTkOpJ74DEJCorzZghYDPRtUnWeQvy5
t92WGV9KgmOt4UQ7GgZG07XvOiCPcho/vNG9iwRcSykTO7ZjwWspvcHUjwnc
x64cbqST4NbrKGk+RSyEStyNjUdz3Kw5C/8ECUIFWj0ND2PhuRvFZhato6+b
okocJgHHN7/fK5JYGLv0PNAG/VyRttX6vVkkyG8o7PHvwQAXseWnKFpnQfSc
kyuZBO2LF772yGDBKu6B7h7UmwpKK+qJ+8hA3Ojtp9GIBRWXw+X1yNOkHtpe
WzEgg+j8rJ60Ig4yCtLWbiFPM55Re6x4mwwXdluJnAnEwc0pydjDiG9Oku5b
Tzwhw6E5snVfL+Lbd9fl7Yhvz12XkndlkUE/uSo/mRN516OfUt+Qp+3cnUEU
Rp5m6LgYMaeD/Motw60QcU/r+57Poag3ez715IT64+G8ocYD1qdo/2L5qlFB
J0PzO/eG1iY8mNi9CwmOY8KJ30N01z0UmFvkWihxLoO10HE2OuLY02eXj2RH
U4AcyinzO7wc3PZS/shmIx+uxEp29FDA1ytD6LtuBbBstt6Un88EO9nK00+2
U8GUWz2MPFUBmaI3CpsRrwb26iVuuUqFLintLJX8SgjXcE0KqPh3/8Dmb4YZ
VCgj3Li32acKJMFVnFnPBKUal7jhWbTO3A9bI7Nq+KGefMruA3p/eiVdbp2h
wabk8tQyrRpYLPl8qOgzE44k33sjmkyDmoWjV6dEauHFg8r3S71MYK6G6PJP
0OB9k5jfzJ9aeG25Y+HbEBPcbjr28auPwBqx7Myd9jrQl+mmsiCPWjze034y
AnHMbzk34009YGfOBE6PMcFI/MwXvq/Ioyz0Dhn5NcBgwGFtbeRRkmve3eN7
6WA623iBzbQRxg/c8PH/zYSI1rjILX50yND22GMh8hYmR0d/lq7+u36CDxpu
o0OkTS+vQcQ6r3ZjXHjuCjNga3TSuW2u6x5FmxeZnbdngOOzoC+C8ese5Wn+
YoMlngGL/UShmc/rvLpoulsvnHUU3K74bBHYsO5Rba8T96mcH4VshhHPuET7
f/Oi50/lTJJHwdPMwff1xQ6Y83hSwWrKBAd1KQ6Zv8MwNqgzzOtUAPIbGG+2
IV4tMH3iyo0IIFGHGteqEDZJPn4rgnjF135+LyWYAAcuMsjCw4Vwd+KoiBTi
Fe+MjVL2LAHA8okMg7sYmKPCF68jXhnUXWr01CJCw4exvpW+YjgQlJvBhXh1
Vhn/NeocEXymejR5VoshN6SIbTvypeKtacmbnhLhAa7uQl55CWhfMP27A/nS
w3sfSRfqiLDDJiBwWKkU9ilnF8giXsluIs7r9hFBUOAuCHqWghh79I0u5FGr
kqxRz/6gdVhiwqIHSmG34umdTciXtu/sV+NHvmTn2vBzXhYDw8VfGheRFxGS
ri23G5NAT1VaLMUFA82JQs3xiFec7+LfOjxD3qWf4Hu5BgP7wzNdOu4yIXhW
OmzXexK4n9ySt7CCAeFPi/uM/f89f0wCO71EgncM5fhT57CQ659x0gF137E8
oUxuATIst/Mz+KOwIJ151uoO4omsWK2rtALyHNLxI7RWLPyqkczVRR6lvRJ+
KfY4On+3F2t6seDgoD1TVRF5lE28ThDpKhmORKuW3NTEQSc/c+ZrCOJhgnV7
qBMZ6IpJfftu4sCvdn+tBvKrPKvmKG7kVyNvm3xuJ+JgW9LhjZyIP5+dP7n7
R5Nh8ZFm0FonDpTgqWoM6sRte6/LmKWh+bD3F/oyDjR598d3Iy716vPMxxSS
obL1bm/0Hjx0aTLXOhGXEn6Jq+dWkIHdrd2g8QQe7pWQS1gfI5+JTPMlVZHB
5maMc9sZPFTdMZo2Qeu095nu1cwhw8ZM10PcAnjYN9Q1/h39nmkiPb/2BZJB
6gZj9l0BDuRWlnVy/n2vWW20eSWFDA8dm2t+VODh+KrXY45UtL+wRcm33KVA
0bs7YUqXykE2qExqPAt1TeX4qlQXBYjhn2RfQgU02qoon0B+9bm/xVZdCPFn
TCaYjbUSnJ7NB1ZhUG9e17CqtKbCg15yyYmWSni83dRyFXVfd5mNpg6WCrpO
L6ji2VVgRfp69UQj4oxdb1YRG/Iij9sdrx9Wg9eDbT4sH5ngaT/LFW5Gg4zJ
PL7pmzUg7vVen9jJhFf066XVWBoIGztSxyxrQX3fgTMz/cjzHVPMBVhH4Cu7
RG6vah2w+F5Z20dgAtZswmnBcASEcS8HKLz18G5VUfrICDpORBcjt78egdTe
3DMiP+pByWTE9cUEOu9+iVcmzI6APYfgycy2BkiSft96d5YJYvZJr/jO0yGs
/qrn9ZpGmNY6mL3wlwmkFEtfsQw68I9n7Ay9tM4lGu+FbTzzdLgSXa+Y4rLu
UTF+ezaf0WHAbP/P89TkdY/Kc5ph2Z/MAC8/xssjPOtcCn849sZ3igEj4ZhJ
Lr91jxL8vkPcQXcUutNZRojz6x41qTRuKZM9Ck3bS9NGUjv+m/ulanktrY0C
z2UaD7toF6i0hH/bhnhVUtlhxLE0DNp/Cs7dcykAN/a/WpPm6HP3vFOy7TIB
BMzDpzVNCiFSFj9FsGTC5S9nzGPuE2BHtPeplI5C+DNtp0dHPSi/YG5vMEWA
mhTxyBssxZCXcTuc4MCE/adShkaViBAi/kohobwYpiJpDjjEMZHKQumYk0Ro
a5MzMBwrBp6oPqVeZybc5UzqwEYSAfvjHFYutwT8u+//NkYcGwi/gNOKJ0JF
SrzZs5YSeLOpVOUZ8i75Fd6ldxginMpWHrjDWwqz8vfu2SGOETfTmlK+EWHv
+Oj3uKBSYP85IERF3vXwq1BGFC/ykMRTe+w4McDYfnXjAcQrg9nZ1S2nSXB2
hfedx2UMkM80mCXdYcKMW99JlQASkHetbpZMxYAxdm8pG+JV2uXqCAssCfxP
/brQScdAbEb1ISXkOey22ayHqCQYO1R9+tg+LNSXbZ+uCkA+UGmaEMyFzt8P
fw899sbCoy2+zoqIV1U2RiQOOTI0sihib71F86ObVW4jXuWc+TlmrEOG2Aev
d+ptwoHhl1SJWsSrNV23ZEELMgRpmtYan8OBcKzBj2XkRSXc6dn23mSg/ti7
TykWB3FRPHADceny8JezfrFkuHPqvC/xGw5OLp874oa48WFa8454LhlyzJ0y
fYXwUAydSU8RZ/q8EuIEG8lQuGD0AGeKh+qp/uMfYxB/JrdyzA6QYaJY9rtx
Kh4aW9LP2KPuM7+vyX58ngzPjRdDeH7iwUzUqloCdZ+c9wVuKj8FWjnk+Jyg
DOT6Qw8lJ6J15KXInLoUeHhSrIHxsQzwUpXmrsiXos7/OGkQToG++7fEff3K
IWQ3l4kr6r5V+tWZfWUUyMZqYO7NlsN19mcRuDdMOK8/uUVyhAKF5zuer3hX
QLZCq/ADxKUjP4O0aDupwLbqe+MURyXYjmhzp/7rvqvOWjpXqPDOgFRukV0J
xj4TmJeo+xrypPxDEqjA9+i5npl5FbDmWw+loe6LFxA9JUSnwqpBrKq0cjW4
rmI3vELdFydr/fWVCg1Ku7TSuthr4NazG7JU1H3tcuI7OR/R4O21/qdmIzWA
Ve35sKMH+bOCvnpjPw3iOntbxxtr4ZOoxIdW1H2fyqyyGZIjIMMxds4hug4W
9Z5azpPQXObPQWMPxKV6ozztG/XQFnfxvNkoE37x3JY71DwCHGzSOzB6DdDk
UM8MmmLCxFmV3S476GC78lhjRqoRHkSzKykv/Pt/h5IPaS506LLhI9Wzv4UN
NeezTFeYoGYS9Lq3hg5WTUf5h73WeVUXw7rxEScDSi+NO4btWPeorKLgeF0T
BqSshkYsKq971AnKZm5sFgPCfv/a526+zqvGhsO7JZgM6H/0u/r9/XVePaTs
Y3XXQH03ppa1KenT/3Wl2HJ2COrBMpeQ+9jP/83dc09ZNrWOgur9VDvOnE7w
FHm4LIB4tajm93oC8SpuJ38tw60Apiw3/x5EvAr1Ehc4bUAAZ5FKPsfLhcCl
+F3sNeLV816dpxq+BPjTtjFPtLEQTmGppdKIV64hr/EeBAI8UrE79bCnCJh+
T3Ll7JmQTG7/U72VCFN5u33KLxTDjzmnglHEsYj3p/e2KxOBW3tzKktVMVSJ
no16ibxLUG4Hxx8TInBUhV6mSJSAerNWVymaN+51fd1oRoRfi0bKFdIlwNl+
te0F4ljMo8sPYlMQl2zZF3j6Ece+BpuZIV6dCz/iXTlIhIstgW7yD0qhMZE4
N/CPV8ZuV3K3kyA3LHZCcRsGnvE7v+RBvDrgNC1so0OCmpp5kZ6LGNgwO9hx
G/GKJizLm3OXBL9vKMqdS8RA9FLohzuoyw5wG5tMZZPgh/YOHXofBjSZ1q2H
UMf1hQyFrrWToMRVoH/rVizMRluINSCOFdziVMmYIgG1+qWhrAYWNlWYuesj
jkmceeOewUGGhcxDnSecsEBQUkrgvc8E8lh/cYoYGdJn5ZNT07FgdoQaIxjI
hO+8yt3aKmTAvmjFqQ1jIa3/vFw86rsTkjNv1S4hXmURnS/tw8FiHMF8HnmX
NPf9hm/OiHv7WO+1uuPgYW+867kwJoyflhLaFkqGlN+m1zircHBeKDTgNfKr
zH0ynlrpZLAvkgSDNRywB89U1yCPckplnXhfToaBC0pkI8DDXp0WYw3EMavU
F+O13WQYLL/47uZjPNxhFsb4Io6Ni/IY7VkggzspYsFvCg/PZI9RR1HfeX8I
ujm8lwIN7gUa773L4Jh5lRsB+dKt85JM4YcUoN3nv/XEqRxEX7cY4hCvzJ+N
vT1VSYHBHJPx6aVy8L1ivvN3DtoHb2xiNZmhwKEZIa+C1AoYOhZw1aGICX/z
yVs1D1LhzUDCiys6lXC1ZFOWLA7td3Y2bm9vU+GJXjuWOl0JrqrZu2SrUe+H
jSqoNVChHmtPN/9YBT4XM55Zv2WC1967/ao8NCB7L5rXZ1XDBolTXz2RR2n9
YXGJtKKB1RKv2POAGsiN4y7Y8gVxrCKMLQNPA6m+Rb4ddrUgnN46qfkVdcrX
u6MnN46Ay2oJIUC7DtKc1K/xI4+KlNtTuwF5VM2m3bEXeOqBEoo5z4s8Sulp
w0mnVyNg/LxkPHGkHqJf9n/VRB7FsXozupw5Ap6/j/HsaGwAthCILphB58vW
uhiBk3RQ8PMv//m6Ecg5740NkUcdhK7dpCQ6XLy33FNwep1LOEdT55AJOpyX
zbW8K7PuUYyZVMsL6gzY1jX7NNNw3aOsMpuqs6IZsOrVOuBXtn4fgkAVa1ws
gQEHZgK9U1bX70PYp7v5JefhUXjpLkJbdV/nUtJvvIX241EQ4zKMDh9b55Lg
Nec9yuRR6PBOrG6/9OW/+Sa1E9oM5TGwkFmxbP/SBbhb/hKSiFenKqSnOpeH
YVojQN7wdgFgq/bp5SBebf/9Pr7vHAGKfEvohrqF0KcmRD2NeDVvdpRw1J0A
wznm9Zb5aC4VKyV+nQlv4tXGzVsIwPjxZRb7oggu3rwQFIzmL5/8GNP6QoAw
RcqFocIi8CJO1L9E/fjrh0vruVUCeFNvW9H2F4OGrqUrE3HvgfdmrAoT9Wbt
o8VuNuRpq9m3oxHfjPW1vTvkiGC20wqrk1kMt9PO14ohH7sqEOlc4UeEnqQ/
34sDSuCdcVxjNfIu0ZVGRYMyIqgr9sTtEi2FgN3HKxsQxy5GjHslUYgwKPGs