From d55277c032d68d1f916b59ea586d3711e96db33a Mon Sep 17 00:00:00 2001 From: Alon Grinberg Dana Date: Wed, 4 Dec 2024 14:21:02 +0200 Subject: [PATCH] Use numpy_to_list() in rmg_constantTP to save human readable YAML files --- t3/simulate/rmg_constantTP.py | 11 ++++------- 1 file changed, 4 insertions(+), 7 deletions(-) diff --git a/t3/simulate/rmg_constantTP.py b/t3/simulate/rmg_constantTP.py index ea645f72..6eb49869 100755 --- a/t3/simulate/rmg_constantTP.py +++ b/t3/simulate/rmg_constantTP.py @@ -21,7 +21,7 @@ from arc.common import save_yaml_file from t3.common import get_chem_to_rmg_rxn_index_map, get_species_by_label, get_values_within_range, \ - get_observable_label_from_header, get_parameter_from_header, time_lapse + get_observable_label_from_header, get_parameter_from_header, numpy_to_list, time_lapse from t3.simulate.adapter import SimulateAdapter from t3.simulate.factory import register_simulate_adapter from t3.utils.writer import write_rmg_input_file @@ -249,17 +249,14 @@ def get_sa_coefficients(self, if not os.path.exists(solver_path): self.logger.error("Could not find the path to RMG's SA solver output folder.") return None - sa_files = list() - for file_ in os.listdir(solver_path): - if 'sensitivity' in file_ and file_.endswith(".csv"): - sa_files.append(file_) + sa_files = [file_ for file_ in os.listdir(solver_path) if 'sensitivity' in file_ and file_.endswith(".csv")] sa_dict = {'kinetics': dict(), 'thermo': dict(), 'time': list()} for sa_file in sa_files: df = pd.read_csv(os.path.join(solver_path, sa_file)) for header in df.columns: sa_type = None if 'Time' in header: - sa_dict['time'] = df[header].values + sa_dict['time'] = numpy_to_list(df[header].values) elif '/dln[k' in header: sa_type = 'kinetics' elif '/dG[' in header: @@ -277,7 +274,7 @@ def get_sa_coefficients(self, parameter = parameter[1:] parameter = chem_to_rmg_rxn_index_map[int(parameter)] \ if all(c.isdigit() for c in parameter) else parameter - sa_dict[sa_type][observable_label][parameter] = df[header].values + sa_dict[sa_type][observable_label][parameter] = numpy_to_list(df[header].values) if save_yaml: save_yaml_file(path=self.paths['SA dict'], content=sa_dict) return sa_dict