-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpreprocess_ShapeNetAll.py
223 lines (179 loc) · 9.16 KB
/
preprocess_ShapeNetAll.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import argparse
import os
import shutil
import multiprocessing
import gc
import sys
import cv2
import numpy as np
import h5py as h5
from itertools import product
from lib.meshes.objmesh import ObjMesh
def define_options_parser():
parser = argparse.ArgumentParser(
description='Data processor for ShapeNetCore dataset. '
'All OBJ files are preprocessed and accumulated in a single .h5 file.'
)
parser.add_argument('snc1_data_dir', type=str, help='Path to directory containing the unpacked ShapeNetCore.v1 dataset.')
parser.add_argument('sna_data_dir', type=str, help='Path to directory containing the unpacked ShapeNetAll dataset.')
parser.add_argument('save_dir', type=str, help='Path to directory for the output.')
parser.add_argument('n_processes', type=int, help='Number of parallel processing jobs.')
parser.add_argument('batch_size', type=int, help='Number of shapes in processed batches.')
return parser
def process_png_file(sample):
img = np.expand_dims(np.transpose(np.array(cv2.imread(sample), dtype=np.uint8), (2, 0, 1)), 0)
return img
def process_obj_file(sample):
sample_obj = ObjMesh(sample)
sample_obj.cleanup()
data = sample_obj.reformat()
del sample_obj
gc.collect()
return data
def process_images(part, cats, cat2label, fout, args, n_workers=12, batch_size=100):
# Read filenames #
samples = []
labels = []
for cat in cats:
cat_names = sorted([
name for name in os.listdir(os.path.join(args.sna_data_dir, 'ShapeNetMesh', cat))
if os.path.isdir(os.path.join(args.sna_data_dir, 'ShapeNetMesh', cat, name))
])
cat_size = len(cat_names)
if part == 'train':
cat_names = cat_names[:int(0.8 * cat_size)]
elif part == 'test':
cat_names = cat_names[int(0.8 * cat_size):]
samples += list(map(
lambda n: os.path.join(args.sna_data_dir, 'ShapeNetRendering', cat, n), cat_names
))
labels += len(cat_names) * [cat2label[cat]]
# Create datasets #
images_ds = fout.create_dataset('{}_images'.format(part), shape=(24 * len(samples), 4, 137, 137), dtype=np.uint8)
labels_ds = fout.create_dataset('{}_labels'.format(part), data=np.array(labels, dtype=np.uint8))
# Read in batches #
processing_pool = multiprocessing.Pool(processes=n_workers)
n_batches = np.ceil(len(samples) / batch_size).astype(np.uint32)
for b_i in range(n_batches):
processing_list = list(map(
lambda s: os.path.join(s[0], 'rendering', '{:02d}.png'.format(s[1])),
product(samples[batch_size * b_i:batch_size * (b_i + 1)], np.arange(24))
))
processing_results = processing_pool.map(process_png_file, processing_list)
images_ds[24 * batch_size * b_i:24 * batch_size * (b_i + 1)] = np.concatenate(processing_results, 0)
del processing_results
gc.collect()
sys.stdout.write('Packing {} images: [{}/{}]\n'.format(part, b_i + 1, n_batches))
sys.stdout.flush()
processing_pool.close()
def process_meshes(part, cats, cat2label, fout, args, n_workers=12, batch_size=1200):
# Read filenames and labels #
samples = []
labels = []
for cat in cats:
cat_names = sorted([
name for name in os.listdir(os.path.join(args.sna_data_dir, 'ShapeNetMesh', cat))
if os.path.isdir(os.path.join(args.sna_data_dir, 'ShapeNetMesh', cat, name))
])
cat_size = len(cat_names)
if part == 'train':
cat_names = cat_names[:int(0.8 * cat_size)]
elif part == 'test':
cat_names = cat_names[int(0.8 * cat_size):]
samples += list(map(
lambda n: os.path.join(args.sna_data_dir, 'ShapeNetMesh', cat, n), cat_names
))
labels += len(cat_names) * [cat2label[cat]]
# Create datasets #
vcb_ds = fout.create_dataset('{}_vertices_c_bounds'.format(part), shape=(len(samples) + 1,), dtype=np.uint64)
vcb_ds[0] = 0
vc_ds = fout.create_dataset('{}_vertices_c'.format(part), shape=(0, 3), maxshape=(None, 3), dtype=np.float32)
orig_c_ds = fout.create_dataset('{}_orig_c'.format(part), shape=(len(samples), 3), dtype=np.float32)
orig_s_ds = fout.create_dataset('{}_orig_s'.format(part), shape=(len(samples),), dtype=np.float32)
bbox_c_ds = fout.create_dataset('{}_bbox_c'.format(part), shape=(len(samples), 3), dtype=np.float32)
bbox_s_ds = fout.create_dataset('{}_bbox_s'.format(part), shape=(len(samples),), dtype=np.float32)
fb_ds = fout.create_dataset('{}_faces_bounds'.format(part), shape=(len(samples) + 1,), dtype=np.uint64)
fb_ds[0] = 0
fvc_ds = fout.create_dataset('{}_faces_vc'.format(part), shape=(0, 3), maxshape=(None, 3), dtype=np.uint32)
labels_ds = fout.create_dataset('{}_labels'.format(part), data=np.array(labels, dtype=np.uint8))
# Read in batches #
processing_pool = multiprocessing.Pool(processes=n_workers)
n_batches = np.ceil(len(samples) / batch_size).astype(np.uint32)
for b_i in range(n_batches):
processing_list = list(map(
lambda s: os.path.join(s, 'model.obj'),
samples[batch_size * b_i:batch_size * (b_i + 1)]
))
processing_results = processing_pool.map(process_obj_file, processing_list)
vcb_ds[batch_size * b_i + 1:batch_size * (b_i + 1) + 1] = \
np.array(list(map(lambda d: len(d['vertices_c']), processing_results)), dtype=np.uint64).dot(
np.triu(np.ones((len(processing_results), len(processing_results)), dtype=np.uint64))
)
b_vc = np.concatenate(list(map(lambda d: d['vertices_c'], processing_results)), axis=0)
vc_ds_s = vc_ds.shape[0]
vc_ds.resize((vc_ds_s + len(b_vc), 3))
vc_ds[vc_ds_s:] = b_vc
orig_c_ds[batch_size * b_i:batch_size * (b_i + 1)] = \
np.concatenate(list(map(lambda d: d['orig_c'].reshape(1, -1), processing_results)), axis=0)
orig_s_ds[batch_size * b_i:batch_size * (b_i + 1)] = \
np.array(list(map(lambda d: d['orig_s'], processing_results)))
bbox_c_ds[batch_size * b_i:batch_size * (b_i + 1)] = \
np.concatenate(list(map(lambda d: d['bbox_c'].reshape(1, -1), processing_results)), axis=0)
bbox_s_ds[batch_size * b_i:batch_size * (b_i + 1)] = \
np.array(list(map(lambda d: d['bbox_s'], processing_results)))
fb_ds[batch_size * b_i + 1:batch_size * (b_i + 1) + 1] = \
np.array(list(map(lambda d: len(d['faces_vc']), processing_results)), dtype=np.uint64).dot(
np.triu(np.ones((len(processing_results), len(processing_results)), dtype=np.uint64))
)
b_fvc = np.concatenate(list(map(lambda d: d['faces_vc'], processing_results)), axis=0)
fv_ds_s = fvc_ds.shape[0]
fvc_ds.resize((fv_ds_s + len(b_fvc), 3))
fvc_ds[fv_ds_s:] = b_fvc
del processing_results
gc.collect()
sys.stdout.write('Packing {} meshes: [{}/{}]\n'.format(part, b_i + 1, n_batches))
sys.stdout.flush()
processing_pool.close()
# Repair cross batch shape vertices bounds #
vcb = np.array(vcb_ds[:])
vcb_upd = np.tile(
np.tril(np.ones((n_batches, n_batches), dtype=np.uint64)).dot(vcb[0::batch_size]).reshape(-1, 1),
(1, batch_size)
).flatten()[:(len(vcb) - 1)]
vcb[1:] = vcb[1:] + vcb_upd
vcb_ds[:] = vcb
# Repair cross batch shape faces bounds #
fb = np.array(fb_ds[:])
fb_upd = np.tile(
np.tril(np.ones((n_batches, n_batches), dtype=np.uint64)).dot(fb[0::batch_size]).reshape(-1, 1),
(1, batch_size)
).flatten()[:(len(fb) - 1)]
fb[1:] = fb[1:] + fb_upd
fb_ds[:] = fb
def main():
parser = define_options_parser()
args = parser.parse_args()
# Copy meshes from ShapeNetCore.v1 corresponding to shapes in ShapeNetAll #
cats_all = sorted(os.listdir(os.path.join(args.sna_data_dir, 'ShapeNetRendering')))
cats2samples = {
cat: sorted(os.listdir(os.path.join(args.sna_data_dir, 'ShapeNetRendering', cat))) for cat in cats_all
}
for cat, samples in cats2samples.items():
for sample in samples:
samplename = os.path.join(cat, sample)
shutil.copytree(os.path.join(args.snc1_data_dir, samplename),
os.path.join(args.sna_data_dir, 'ShapeNetMesh', samplename))
cats = sorted(os.listdir(os.path.join(args.sna_data_dir, 'ShapeNetMesh')))
cat2label = {
'{}'.format(str(cat)): i for i, cat in enumerate(cats)
}
fout_images = h5.File(os.path.join(args.save_dir, 'ShapeNetAll13_images.h5'), 'w')
process_images('train', cats, cat2label, fout_images, args, n_workers=args.n_processes, batch_size=args.batch_size // 24)
process_images('test', cats, cat2label, fout_images, args, n_workers=args.n_processes, batch_size=args.batch_size // 24)
fout_images.close()
fout_meshes = h5.File(os.path.join(args.save_dir, 'ShapeNetAll13_meshes.h5'), 'w')
process_meshes('train', cats, cat2label, fout_meshes, args, n_workers=args.n_processes, batch_size=args.batch_size)
process_meshes('test', cats, cat2label, fout_meshes, args, n_workers=args.n_processes, batch_size=args.batch_size)
fout_meshes.close()
if __name__ == '__main__':
main()