forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
custom_function.h
490 lines (437 loc) · 17.8 KB
/
custom_function.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
#pragma once
#include <ATen/core/ivalue.h>
#include <c10/core/SymInt.h>
#include <c10/util/flat_hash_map.h>
#include <c10/util/irange.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/autograd/variable_info.h>
#include <torch/csrc/dynamo/compiled_autograd.h>
#include <vector>
namespace torch::autograd {
using optional_variable_list = std::vector<std::optional<Variable>>;
using _jvp_fn_t = std::function<variable_list(variable_list, variable_list)>;
using _view_as_self_fn_t = std::function<at::Tensor(at::Tensor)>;
TORCH_API std::vector<std::optional<Variable>> _wrap_outputs(
const variable_list& input_vars,
const std::unordered_set<at::TensorImpl*>& non_differentiable,
const std::unordered_set<at::TensorImpl*>& dirty_inputs,
const at::ArrayRef<std::optional<Variable>> raw_outputs,
const std::shared_ptr<Node>& cdata,
const _jvp_fn_t& jvp_user_function,
const std::unordered_set<at::TensorImpl*>& to_save_if_setup_context,
const _view_as_self_fn_t& view_as_self_fn);
TORCH_API void check_variable_result(
const at::TensorBase& original,
const at::TensorBase& result,
const std::string& hook_name);
// Get the return type of the forward function of the custom Function class X
template <typename X, typename... Args>
using forward_t = decltype(X::forward(nullptr, std::declval<Args>()...));
/// To use custom autograd operations, implement a Function subclass with
/// static forward and backward functions:
///
/// `forward` can take as many arguments as you want and should return either a
/// variable list or a Variable. Use of any direct Variable arguments will be
/// registered in the graph but no vectors/sets or any other data structures
/// will be traversed. You can use std::optional<Tensor> as one of the arguments
/// and it will be registered as a variable in the graph if the argument has a
/// value. It should take a pointer to `torch::autograd::AutogradContext` as the
/// first argument. Variables can be saved in the `ctx` using
/// `ctx->save_for_backward`
/// (see `torch::autograd::AutogradContext::save_for_backward`) and other data
/// can be saved in the `ctx->saved_data` map
/// (see `torch::autograd::AutogradContext::saved_data`)
/// in the form of `<std::string, at::IValue>` pairs.
///
/// `backward` should take a pointer to `torch::autograd::AutogradContext`
/// and a variable list containing as many Variables as there were outputs from
/// `forward` as arguments. It should return as many Variables as there were
/// inputs with each of them containing the gradient w.r.t. its corresponding
/// input. Variables saved in `forward` can be accessed with
/// `ctx->get_saved_variables` (see
/// `torch::autograd::AutogradContext::get_saved_variables`) and other saved
/// data can be accessed from `ctx->saved_data`.
/// To enable compiled autograd support (torch.compile for backward) for your
/// custom autograd operation, you can set MyFunction::is_traceable
/// (see Function::istraceable notes below).
///
/// For example:
/// ```
/// class MyFunction : public Function<MyFunction> {
/// public:
/// static constexpr bool is_traceable = true;
///
/// static variable_list forward(AutogradContext *ctx, int n, Variable var) {
/// // Save data for backward in context
/// ctx->saved_data["n"] = n;
/// var.mul_(2);
/// // Mark var as modified by inplace operation
/// ctx->mark_dirty({var});
/// return {var};
/// }
///
/// static variable_list backward(AutogradContext *ctx, variable_list
/// grad_output) {
/// // Use data saved in forward
/// auto n = ctx->saved_data["n"].toInt();
/// return {grad_output[0]*n};
/// }
/// };
/// ```
///
/// To use `MyFunction`:
/// ```
/// Variable x;
/// auto y = MyFunction::apply(6, x);
/// // Example backward call
/// y[0].sum().backward();
/// ```
template <class T>
struct TORCH_API Function {
// We need to use a different template parameter than T here because T will
// inherit from Function, and when Function<T> is instantiated, T::forward
// is not declared yet.
// The enable_if check is to ensure that the user doesn't explicitly provide
// the parameter X.
template <typename X = T, typename... Args>
static auto apply(Args&&... args)
-> std::enable_if_t<std::is_same_v<X, T>, forward_t<X, Args...>>;
// This flag is for an experimental feature: compiled autograd. Not all
// built-in APIs are supported at the moment e.g. mark_dirty and
// mark_non_differentiable. Before setting this flag to enable tracing for
// your custom function <T>, you need to ensure that the backward function is
// traceable i.e. any variables accessed in the backward other than the input
// arguments must be handled in a similar manner to built-ins in
// CppNode::compiled_args and CppNode::apply_with_saved.
static constexpr bool is_traceable = false;
};
/// Context to save information during `forward` that can be accessed in
/// `backward` in custom autograd operations (see `torch::autograd::Function`
/// for details).
struct TORCH_API AutogradContext {
AutogradContext() = default;
AutogradContext(const AutogradContext& other) = delete;
AutogradContext& operator=(const AutogradContext& other) = delete;
/// Can be used to save non-variable data for `backward`.
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
ska::flat_hash_map<std::string, at::IValue> saved_data;
/// Saves the list of variables for a future call to `backward`. This
/// should be called at most once from inside of `forward`.
void save_for_backward(variable_list to_save);
/// Marks variables in the list as modified in an in-place operation. This
/// should be called at most once from inside of `forward` and all arguments
/// should be inputs.
void mark_dirty(const variable_list& inputs);
/// Marks outputs in the list as not requiring gradients. This should be
/// called at most once from inside of `forward` and all arguments should be
/// outputs.
void mark_non_differentiable(const variable_list& outputs);
// Sets whether undefined output grad tensors should be expanded to tensors
// full of zeros before calling backward function. Default value is true.
void set_materialize_grads(bool value);
/// Get the list of variables that were saved in `forward` using
/// `save_for_backward()`. Before returning them to the user, a check is made
/// to ensure that they were not modified by any in-place operations.
variable_list get_saved_variables() const;
const std::unordered_set<at::TensorImpl*>& get_and_bump_dirty() const;
const std::unordered_set<at::TensorImpl*>& get_non_differentiable() const;
/// Expose the Node's `task_should_compute_output` method to the cpp
/// custom autograd Function as `needs_input_grad`.
bool needs_input_grad(size_t output_edge_index) const;
bool needs_input_grad(std::initializer_list<IndexRange> idxs) const;
private:
std::unordered_set<at::TensorImpl*> non_differentiable_;
std::unordered_set<at::TensorImpl*> dirty_inputs_;
std::vector<torch::autograd::SavedVariable> saved_variables_;
variable_list to_save_;
bool materialize_grads_{true};
// The CppNode in the autograd graph that owns this AutogradContext. We need a
// weak_ptr to avoid a refcycle. Since grad_fn_ owns this AutogradContext, it
// will always be alive when we want to use it.
std::weak_ptr<Node> grad_fn_;
bool has_freed_buffers_{false};
void save_variables();
template <class T>
friend struct CppNode;
};
// CppNode<T> is the Node in the autograd graph that represents the user defined
// backward function for Function<T>. Calls to CppNode::apply are forward to
// T::backward().
template <class T>
struct CppNode : public Node {
variable_list apply(variable_list&& inputs) override;
AutogradContext ctx_;
std::vector<bool> is_variable_input_;
std::vector<VariableInfo> input_info_;
std::vector<VariableInfo> output_info_;
void release_variables() override;
void set_ctx_grad_fn(const std::shared_ptr<Node>& node);
void save_variables_to_ctx();
void compiled_args(CompiledNodeArgs& args) override {
if (!T::is_traceable) {
throw std::runtime_error(
std::string(
"compiled_args not implemented for non-traceable node: ") +
name());
}
// although neither of the 2 methods below have uniqueness guarantees
// it is unlikely for them to collide at the same time
args.collect(static_cast<uint64_t>(typeid(T).hash_code()));
args.collect(std::string(typeid(T).name()));
args.collect(ctx_.saved_data);
TORCH_INTERNAL_ASSERT(ctx_.non_differentiable_.empty());
TORCH_INTERNAL_ASSERT(ctx_.dirty_inputs_.empty());
args.collect(ctx_.saved_variables_);
TORCH_INTERNAL_ASSERT(ctx_.to_save_.empty());
args.collect(ctx_.materialize_grads_);
args.collect(ctx_.has_freed_buffers_);
args.collect(is_variable_input_);
args.collect(input_info_);
args.collect(output_info_);
}
variable_list apply_with_saved(
const variable_list& inputs,
SwapSavedVariables& saved) override {
saved.before(ctx_.saved_data);
TORCH_INTERNAL_ASSERT(ctx_.non_differentiable_.empty());
TORCH_INTERNAL_ASSERT(ctx_.dirty_inputs_.empty());
saved.before(ctx_.saved_variables_);
TORCH_INTERNAL_ASSERT(ctx_.to_save_.empty());
saved.before(ctx_.materialize_grads_);
saved.before(ctx_.has_freed_buffers_);
saved.before(input_info_);
saved.before(output_info_);
auto results = apply(variable_list(inputs));
saved.after(ctx_.saved_data);
TORCH_INTERNAL_ASSERT(ctx_.non_differentiable_.empty());
TORCH_INTERNAL_ASSERT(ctx_.dirty_inputs_.empty());
saved.after(ctx_.saved_variables_);
TORCH_INTERNAL_ASSERT(ctx_.to_save_.empty());
saved.after(ctx_.materialize_grads_);
saved.after(ctx_.has_freed_buffers_);
saved.after(input_info_);
saved.after(output_info_);
return results;
}
};
struct ExtractVariables : IterArgs<ExtractVariables> {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
std::vector<bool>& is_var_;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
variable_list& list_;
ExtractVariables(std::vector<bool>& is_var, variable_list& list)
: is_var_(is_var), list_(list) {}
void operator()(const std::optional<at::Tensor>& x) {
// NOLINTNEXTLINE(bugprone-branch-clone)
if (x.has_value() && x.value().defined()) {
is_var_.push_back(true);
list_.emplace_back(x.value());
} else {
is_var_.push_back(false);
}
}
void operator()(const at::Tensor& x) {
is_var_.push_back(true);
list_.emplace_back(x);
}
void operator()(const at::TensorList& list) {
for (const at::Tensor& x : list) {
is_var_.push_back(true);
list_.emplace_back(x);
}
}
template <typename T>
void operator()(const T& x) {
is_var_.push_back(false);
}
};
template <typename... Args>
inline void extract_vars(
std::vector<bool>& is_var,
variable_list& list,
Args&&... args) {
ExtractVariables(is_var, list).apply(std::forward<Args>(args)...);
}
template <typename T>
std::enable_if_t<std::is_same_v<T, variable_list>, T> to_output_type(
std::vector<std::optional<Variable>>& output_list) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
variable_list result;
std::transform(
output_list.begin(),
output_list.end(),
std::back_inserter(result),
[](const std::optional<Variable>& var) { return *var; });
return result;
}
template <typename T>
std::enable_if_t<std::is_same_v<T, Variable>, T> to_output_type(
std::vector<std::optional<Variable>>& output_list) {
return *output_list[0];
}
inline std::vector<std::optional<Variable>> to_optional(Variable& output) {
return std::vector<std::optional<Variable>>{output};
}
inline std::vector<std::optional<Variable>> to_optional(variable_list& output) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
std::vector<std::optional<Variable>> result;
std::transform(
output.begin(),
output.end(),
std::back_inserter(result),
[](const Variable& var) { return var; });
return result;
}
template <class T>
template <typename X, typename... Args>
auto Function<T>::apply(Args&&... args)
-> std::enable_if_t<std::is_same_v<X, T>, forward_t<X, Args...>> {
const auto& functorch_tls = at::functorch::functorchTLSAccessor();
if (functorch_tls) {
// Function support for functorch is handled in Python.
// Here we are dealing with a (C++) Function, which is not supported.
// Let's raise an error instead of being silently incorrect.
functorch_tls->checkSupportsCppAutogradFunction();
}
std::shared_ptr<CppNode<T>> node(new CppNode<T>(), deleteNode);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
variable_list input_vars;
const size_t num_inputs = sizeof...(Args);
input_vars.reserve(num_inputs);
node->is_variable_input_.reserve(num_inputs);
// TODO Add tracing here
extract_vars(node->is_variable_input_, input_vars, args...);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
bool is_executable =
GradMode::is_enabled() && any_variable_requires_grad(input_vars);
auto next_edges =
(is_executable ? collect_next_edges(input_vars) : edge_list());
node->set_ctx_grad_fn(node);
node->set_next_edges(std::move(next_edges));
node->clear_input_metadata();
node->input_info_.reserve(input_vars.size());
for (auto& var : input_vars) {
node->input_info_.emplace_back(var);
}
using forward_return_t = forward_t<X, Args...>;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
forward_return_t outputs;
{
AutoGradMode grad_mode(false);
outputs = T::forward(&node->ctx_, std::forward<Args>(args)...);
}
_jvp_fn_t jvp_fn = [](const variable_list& inputs,
const variable_list& gI) -> variable_list {
TORCH_CHECK(
false,
"jvp is not implemented for the c++ API of custom Function yet.",
"Please open a feature request on GitHub if you need this.");
};
auto view_as_self_fn = [](const at::Tensor& x) -> at::Tensor {
return x.view_as(x);
};
auto wrapped_outputs = _wrap_outputs(
input_vars,
node->ctx_.get_non_differentiable(),
node->ctx_.get_and_bump_dirty(),
to_optional(outputs),
is_executable ? node : nullptr,
jvp_fn,
{},
view_as_self_fn);
node->output_info_.reserve(wrapped_outputs.size());
for (auto& output : wrapped_outputs) {
if (is_executable && output.has_value()) {
node->output_info_.emplace_back(output.value());
} else if (is_executable) {
node->output_info_.emplace_back();
}
}
if (is_executable) {
node->save_variables_to_ctx();
}
// wrapped_outputs will be a variable_list so, convert it to the correct
// return type. Only Variable and variable_list are accepted as return types.
return to_output_type<forward_return_t>(wrapped_outputs);
}
// The logic here is the same as PyNode::apply, so changes to it should be done
// in both the places
template <class T>
// NOLINTNEXTLINE(cppcoreguidelines-rvalue-reference-param-not-moved)
variable_list CppNode<T>::apply(variable_list&& inputs) {
at::OptionalDeviceGuard _device_guard;
auto num_inputs = inputs.size();
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
variable_list backward_inputs;
backward_inputs.reserve(num_inputs);
for (const auto i : c10::irange(num_inputs)) {
if (inputs[i].defined() || !ctx_.materialize_grads_) {
backward_inputs.emplace_back(std::move(inputs[i]));
} else {
backward_inputs.emplace_back(output_info_[i].zeros(_device_guard));
}
}
// Acquire lock to here protect thread safety on custom C++ Autograd Node
// This is needed for the custom Autograd Node since we don't know if the
// user defined Node will write to the shared data during backward.
// see Note [Thread Safety on Autograd Node]
std::lock_guard<std::mutex> lock(mutex_);
auto outputs = T::backward(&ctx_, backward_inputs);
const auto num_forward_inputs =
static_cast<int64_t>(is_variable_input_.size());
auto num_outputs = static_cast<int64_t>(outputs.size());
// Returning too many results is ok, but only as long as they're all
// undefined. Truncate the result vector in that case.
if (num_outputs > num_forward_inputs) {
bool all_undef = true;
for (const auto i : c10::irange(num_forward_inputs, num_outputs)) {
all_undef &= (!outputs[i].defined());
}
if (all_undef) {
outputs.resize(num_forward_inputs);
num_outputs = num_forward_inputs;
}
}
if (num_outputs != num_forward_inputs) {
std::string msg("function ");
msg += name() + " returned an incorrect number of gradients (expected ";
msg += c10::to_string(num_forward_inputs) + ", got ";
msg += c10::to_string(num_outputs) + ")";
throw std::runtime_error(msg);
}
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
variable_list results;
results.reserve(num_outputs);
for (const auto i : c10::irange(num_outputs)) {
if (!is_variable_input_[i]) {
if (outputs[i].defined()) {
std::string msg("function ");
msg += name() +
" returned a gradient different that is defined at position ";
msg += c10::to_string(i + 1) +
", but the corresponding forward input was not a Variable";
throw std::runtime_error(msg);
}
continue;
}
results.emplace_back(outputs[i]);
}
return results;
}
template <class T>
void CppNode<T>::release_variables() {
// lock to ensure thread safety, see [Thread Safety on Autograd Node]
std::lock_guard<std::mutex> lock(mutex_);
ctx_.saved_variables_.clear();
ctx_.has_freed_buffers_ = true;
}
template <class T>
void CppNode<T>::save_variables_to_ctx() {
ctx_.save_variables();
}
template <class T>
void CppNode<T>::set_ctx_grad_fn(const std::shared_ptr<Node>& node) {
ctx_.grad_fn_ = node;
}
} // namespace torch::autograd