From 3d8236a8c6fe7622b43286b92da438d2d262ba45 Mon Sep 17 00:00:00 2001 From: Richard Osuala <47958412+RichardObi@users.noreply.github.com> Date: Mon, 27 Nov 2023 23:37:43 +0100 Subject: [PATCH] Update README.md Update of description of generate function with model 8 --- README.md | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 091b709..df80b7e 100644 --- a/README.md +++ b/README.md @@ -85,7 +85,7 @@ Documentation is available at [medigan.readthedocs.io](https://medigan.readthedo ### Generation example #### DCGAN -Create mammography masses with labels (malignant or benign) using a cDCGAN model. +Create mammography masses with labels (malignant or benign) using a class-conditional DCGAN model. ```python # import medigan and initialize Generators from medigan import Generators @@ -96,7 +96,9 @@ generators = Generators() generators.generate(model_id=8, num_samples=8, install_dependencies=True) ``` ![sample](docs/source/_static/samples/c-dcgan/model8_samples.png) -The generated top row samples are malignant and the bottom row samples benign masses (regions-of-interest of mammograms). + +The synthetic images in the top row show malignant masses (breast cancer) while the images in the bottom row show benign masses. +Given such images with class information, image classification models can be (pre-)trained. #### CYCLEGAN