-
Notifications
You must be signed in to change notification settings - Fork 0
/
PolledOneWire.cpp
809 lines (711 loc) · 25.5 KB
/
PolledOneWire.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
/*
Polled OneWire Modifications Copyright (c) 2012, Ryan Pierce, [email protected]
The latest version of this library may be found at:
https://github.com/RyanPierce/PolledOneWire
Polled OneWire Version 0.1:
Initial version, Ryan Pierce
Overview: The original OneWire library makes use of blocking calls. E.g. a
reset() includes 1000 microseconds of delay. In very time critical applications
where other things must happen concurrently with OneWire operations (e.g. doing
phase dimming of an AC circuit), blocking for this long is not acceptable. These
modifications are designed to minimize intentional delays. Rather, one makes a call
to a function, and while poll_status != 0, calls the poll() function. The intent is
that other short operations can be interleaved between calls to poll(). Note that
blocking still does occur; it is unavoidable as writing or reading individual bits
requires precise timing, generally accomplished by a call to delayMicros() with
interrupts disabled.
The rule of thumb is that delays of any call to a function or, subsequently, to
poll() must not include substantial delay. So far, the largest delay is 80 us.
It is possible that excessive time between polls could cause problems. If at all
possible, only interleave simple operations (e.g. checking a timer and setting a
pin) between polls. Things like serial operations are best done outside of polling.
Calling OneWire functions (polled or otherwise) other than poll() while
poll_status != 0 is a recipe for disaster. While building checking for this into this code
is possible, in the interest of performance and space such checks are deleted.
write_bit() is unchanged. It includes 65 or 70 us of delay.
read_bit() is unchanged. It includes 66 us of delay.
NOTE: These two functions could be optimized in the future. read_bit() only has 13 us of
critical delay; 50 us could be replaced with polling. write_bit()'s timing depends on the
bit value. Writing a 1 only requires 10 us critical delay and 55 us time that could
be replaced with polling. Writing a 0 can't be optimized; 65 us delay is
criticual, and the remaining 5 us delay isn't worth optimizing.
The following functions are optimized:
polled_reset() - No delay.
Subsequent poll() - A single poll will have 80 us delay. All other polls will have no
explicit delay. Total polling time: 1000 - 1250 us. The member variable reset_result
will be true if any devices are present on the bus, false otherwise.
polled_write() - 65-70 us delay.
Subsequent poll() - 7 polls each with 65-70 us delay.
polled_read() - 66 us delay.
Subsequent poll() - 7 polls each with 66 us delay. When it completes, the resulting byte
will be stored in the member variable readWriteByte
Note: All multi-byte operations must read or write <= ONEWIRE_MAX_READ_WRITE_BUFFER_LEN
which may be redefined in user code. This should never be less than 9 as that is the number
of bytes needed for a Select.
polled_write_bytes() - Makes N calls to polled_write(). There will be 8N-1 calls to poll()
needed for the operation to complete, each with 65-70 us delay.
polled_read_bytes() - Makes N calls to polled_read(). There will be 8N calls to poll() needed
for the operation to complete, and all but the last will have 66 us delay; the last will have no
delay. When it completes, the resulting bytes will be stored in the member variable
readWriteBuffer.
polled_select() - A shortcut that does a polled write of 9 bytes.
polled_skip() - A shortcut that does a polled write of 1 byte.
At present, search functions are not optimized. It is anticipated that searching for
OneWire devices will happen on startup before timing-critical things need to happen.
Copyright (c) 2007, Jim Studt (original old version - many contributors since)
The latest version of this library may be found at:
http://www.pjrc.com/teensy/td_libs_OneWire.html
Version 2.1:
Arduino 1.0 compatibility, Paul Stoffregen
Improve temperature example, Paul Stoffregen
DS250x_PROM example, Guillermo Lovato
PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com
Improvements from Glenn Trewitt:
- crc16() now works
- check_crc16() does all of calculation/checking work.
- Added read_bytes() and write_bytes(), to reduce tedious loops.
- Added ds2408 example.
Delete very old, out-of-date readme file (info is here)
Version 2.0: Modifications by Paul Stoffregen, January 2010:
http://www.pjrc.com/teensy/td_libs_OneWire.html
Search fix from Robin James
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
Use direct optimized I/O in all cases
Disable interrupts during timing critical sections
(this solves many random communication errors)
Disable interrupts during read-modify-write I/O
Reduce RAM consumption by eliminating unnecessary
variables and trimming many to 8 bits
Optimize both crc8 - table version moved to flash
Modified to work with larger numbers of devices - avoids loop.
Tested in Arduino 11 alpha with 12 sensors.
26 Sept 2008 -- Robin James
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
Updated to work with arduino-0008 and to include skip() as of
2007/07/06. --RJL20
Modified to calculate the 8-bit CRC directly, avoiding the need for
the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010
-- Tom Pollard, Jan 23, 2008
Jim Studt's original library was modified by Josh Larios.
Tom Pollard, [email protected], contributed around May 20, 2008
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Much of the code was inspired by Derek Yerger's code, though I don't
think much of that remains. In any event that was..
(copyleft) 2006 by Derek Yerger - Free to distribute freely.
The CRC code was excerpted and inspired by the Dallas Semiconductor
sample code bearing this copyright.
//---------------------------------------------------------------------------
// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
// Except as contained in this notice, the name of Dallas Semiconductor
// shall not be used except as stated in the Dallas Semiconductor
// Branding Policy.
//--------------------------------------------------------------------------
*/
#include "PolledOneWire.h"
PolledOneWire::PolledOneWire(uint8_t pin)
{
pinMode(pin, INPUT);
bitmask = PIN_TO_BITMASK(pin);
baseReg = PIN_TO_BASEREG(pin);
poll_status = ONEWIRE_POLLSTAT_NONE;
#if ONEWIRE_SEARCH
reset_search();
#endif
}
// Perform the onewire reset function. We will wait up to 250uS for
// the bus to come high, if it doesn't then it is broken or shorted
// and we return a 0;
//
// Returns 1 if a device asserted a presence pulse, 0 otherwise.
//
uint8_t PolledOneWire::reset(void)
{
IO_REG_TYPE mask = bitmask;
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
uint8_t r;
uint8_t retries = 125;
noInterrupts();
DIRECT_MODE_INPUT(reg, mask);
interrupts();
// wait until the wire is high... just in case
do {
if (--retries == 0) return 0;
delayMicroseconds(2);
} while ( !DIRECT_READ(reg, mask));
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
interrupts();
delayMicroseconds(500);
noInterrupts();
DIRECT_MODE_INPUT(reg, mask); // allow it to float
delayMicroseconds(80);
r = !DIRECT_READ(reg, mask);
interrupts();
delayMicroseconds(420);
return r;
}
//
// Write a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
void PolledOneWire::write_bit(uint8_t v)
{
IO_REG_TYPE mask=bitmask;
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
if (v & 1) {
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
delayMicroseconds(10);
DIRECT_WRITE_HIGH(reg, mask); // drive output high
interrupts();
delayMicroseconds(55);
} else {
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
delayMicroseconds(65);
DIRECT_WRITE_HIGH(reg, mask); // drive output high
interrupts();
delayMicroseconds(5);
}
}
//
// Read a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
uint8_t PolledOneWire::read_bit(void)
{
IO_REG_TYPE mask=bitmask;
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
uint8_t r;
noInterrupts();
DIRECT_MODE_OUTPUT(reg, mask);
DIRECT_WRITE_LOW(reg, mask);
delayMicroseconds(3);
DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise
delayMicroseconds(10);
r = DIRECT_READ(reg, mask);
interrupts();
delayMicroseconds(53);
return r;
}
//
// Write a byte. The writing code uses the active drivers to raise the
// pin high, if you need power after the write (e.g. DS18S20 in
// parasite power mode) then set 'power' to 1, otherwise the pin will
// go tri-state at the end of the write to avoid heating in a short or
// other mishap.
//
void PolledOneWire::write(uint8_t v, uint8_t power /* = 0 */) {
uint8_t bitMask;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
PolledOneWire::write_bit( (bitMask & v)?1:0);
}
if ( !power) {
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
DIRECT_WRITE_LOW(baseReg, bitmask);
interrupts();
}
}
void PolledOneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) {
for (uint16_t i = 0 ; i < count ; i++)
write(buf[i]);
if (!power) {
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
DIRECT_WRITE_LOW(baseReg, bitmask);
interrupts();
}
}
//
// Read a byte
//
uint8_t PolledOneWire::read() {
uint8_t bitMask;
uint8_t r = 0;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
if ( PolledOneWire::read_bit()) r |= bitMask;
}
return r;
}
void PolledOneWire::read_bytes(uint8_t *buf, uint16_t count) {
for (uint16_t i = 0 ; i < count ; i++)
buf[i] = read();
}
//
// Do a ROM select
//
void PolledOneWire::select( uint8_t rom[8])
{
int i;
write(0x55); // Choose ROM
for( i = 0; i < 8; i++) write(rom[i]);
}
//
// Do a ROM skip
//
void PolledOneWire::skip()
{
write(0xCC); // Skip ROM
}
void PolledOneWire::depower()
{
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
interrupts();
}
#if ONEWIRE_SEARCH
//
// You need to use this function to start a search again from the beginning.
// You do not need to do it for the first search, though you could.
//
void PolledOneWire::reset_search()
{
// reset the search state
LastDiscrepancy = 0;
LastDeviceFlag = FALSE;
LastFamilyDiscrepancy = 0;
for(int i = 7; ; i--)
{
ROM_NO[i] = 0;
if ( i == 0) break;
}
}
//
// Perform a search. If this function returns a '1' then it has
// enumerated the next device and you may retrieve the ROM from the
// PolledOneWire::address variable. If there are no devices, no further
// devices, or something horrible happens in the middle of the
// enumeration then a 0 is returned. If a new device is found then
// its address is copied to newAddr. Use PolledOneWire::reset_search() to
// start over.
//
// --- Replaced by the one from the Dallas Semiconductor web site ---
//--------------------------------------------------------------------------
// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
// search state.
// Return TRUE : device found, ROM number in ROM_NO buffer
// FALSE : device not found, end of search
//
uint8_t PolledOneWire::search(uint8_t *newAddr)
{
uint8_t id_bit_number;
uint8_t last_zero, rom_byte_number, search_result;
uint8_t id_bit, cmp_id_bit;
unsigned char rom_byte_mask, search_direction;
// initialize for search
id_bit_number = 1;
last_zero = 0;
rom_byte_number = 0;
rom_byte_mask = 1;
search_result = 0;
// if the last call was not the last one
if (!LastDeviceFlag)
{
// 1-Wire reset
if (!reset())
{
// reset the search
LastDiscrepancy = 0;
LastDeviceFlag = FALSE;
LastFamilyDiscrepancy = 0;
return FALSE;
}
// issue the search command
write(0xF0);
// loop to do the search
do
{
// read a bit and its complement
id_bit = read_bit();
cmp_id_bit = read_bit();
// check for no devices on 1-wire
if ((id_bit == 1) && (cmp_id_bit == 1))
break;
else
{
// all devices coupled have 0 or 1
if (id_bit != cmp_id_bit)
search_direction = id_bit; // bit write value for search
else
{
// if this discrepancy if before the Last Discrepancy
// on a previous next then pick the same as last time
if (id_bit_number < LastDiscrepancy)
search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
else
// if equal to last pick 1, if not then pick 0
search_direction = (id_bit_number == LastDiscrepancy);
// if 0 was picked then record its position in LastZero
if (search_direction == 0)
{
last_zero = id_bit_number;
// check for Last discrepancy in family
if (last_zero < 9)
LastFamilyDiscrepancy = last_zero;
}
}
// set or clear the bit in the ROM byte rom_byte_number
// with mask rom_byte_mask
if (search_direction == 1)
ROM_NO[rom_byte_number] |= rom_byte_mask;
else
ROM_NO[rom_byte_number] &= ~rom_byte_mask;
// serial number search direction write bit
write_bit(search_direction);
// increment the byte counter id_bit_number
// and shift the mask rom_byte_mask
id_bit_number++;
rom_byte_mask <<= 1;
// if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
if (rom_byte_mask == 0)
{
rom_byte_number++;
rom_byte_mask = 1;
}
}
}
while(rom_byte_number < 8); // loop until through all ROM bytes 0-7
// if the search was successful then
if (!(id_bit_number < 65))
{
// search successful so set LastDiscrepancy,LastDeviceFlag,search_result
LastDiscrepancy = last_zero;
// check for last device
if (LastDiscrepancy == 0)
LastDeviceFlag = TRUE;
search_result = TRUE;
}
}
// if no device found then reset counters so next 'search' will be like a first
if (!search_result || !ROM_NO[0])
{
LastDiscrepancy = 0;
LastDeviceFlag = FALSE;
LastFamilyDiscrepancy = 0;
search_result = FALSE;
}
for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i];
return search_result;
}
#endif
#if ONEWIRE_CRC
// The 1-Wire CRC scheme is described in Maxim Application Note 27:
// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
//
#if ONEWIRE_CRC8_TABLE
// This table comes from Dallas sample code where it is freely reusable,
// though Copyright (C) 2000 Dallas Semiconductor Corporation
static const uint8_t PROGMEM dscrc_table[] = {
0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220,
35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98,
190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7,
219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154,
101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36,
248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185,
140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139,
87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53};
//
// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
// and the registers. (note: this might better be done without to
// table, it would probably be smaller and certainly fast enough
// compared to all those delayMicrosecond() calls. But I got
// confused, so I use this table from the examples.)
//
uint8_t PolledOneWire::crc8( uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
while (len--) {
crc = pgm_read_byte(dscrc_table + (crc ^ *addr++));
}
return crc;
}
#else
//
// Compute a Dallas Semiconductor 8 bit CRC directly.
// this is much slower, but much smaller, than the lookup table.
//
uint8_t PolledOneWire::crc8( uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
while (len--) {
uint8_t inbyte = *addr++;
for (uint8_t i = 8; i; i--) {
uint8_t mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix) crc ^= 0x8C;
inbyte >>= 1;
}
}
return crc;
}
#endif
#if ONEWIRE_CRC16
bool PolledOneWire::check_crc16(uint8_t* input, uint16_t len, uint8_t* inverted_crc)
{
uint16_t crc = ~crc16(input, len);
return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
}
uint16_t PolledOneWire::crc16(uint8_t* input, uint16_t len)
{
static const uint8_t oddparity[16] =
{ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
uint16_t crc = 0; // Starting seed is zero.
for (uint16_t i = 0 ; i < len ; i++) {
// Even though we're just copying a byte from the input,
// we'll be doing 16-bit computation with it.
uint16_t cdata = input[i];
cdata = (cdata ^ (crc & 0xff)) & 0xff;
crc >>= 8;
if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
crc ^= 0xC001;
cdata <<= 6;
crc ^= cdata;
cdata <<= 1;
crc ^= cdata;
}
return crc;
}
#endif
// Perform the onewire reset function. We will wait up to 250uS for
// the bus to come high, if it doesn't then it is broken or shorted
// and we return reset_status = false;
//
// Ultimately returns reset_status = true if a device asserted a presence pulse, false otherwise.
//
void PolledOneWire::polled_reset()
{
poll_status |= ONEWIRE_POLLSTAT_RESET;
IO_REG_TYPE mask = bitmask;
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
noInterrupts();
DIRECT_MODE_INPUT(reg, mask);
interrupts();
// Now check if the line is high. If not, wait up to 250 us.
if ( DIRECT_READ(reg, mask) ) {
// Success!
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
interrupts();
bitNextTime = micros();
bitNextTime += 500; // Line should stay low for 500 us
bit_status = ONEWIRE_BITSTAT_RESET_WAIT_LOW;
return;
} else {
bitNextTime = micros();
bitNextTime += 250; // Line should go high by 250 ms
bit_status = ONEWIRE_BITSTAT_RESET_WAIT_LINE_HIGH;
return;
}
}
//
// Write a byte. The writing code uses the active drivers to raise the
// pin high, if you need power after the write (e.g. DS18S20 in
// parasite power mode) then set 'power' to 1, otherwise the pin will
// go tri-state at the end of the write to avoid heating in a short or
// other mishap.
//
// We're just going to write 1 bit at a time. Each poll call will write the next bit.
void PolledOneWire::polled_write(uint8_t v, uint8_t power /* = 0 */) {
readWriteByte = v;
writePower = power;
poll_status |= ONEWIRE_POLLSTAT_WRITE;
readWriteBitMask = 0x01;
PolledOneWire::write_bit( (readWriteBitMask & readWriteByte)?1:0);
readWriteBitMask <<= 1;
}
//
// Read a byte
//
void PolledOneWire::polled_read() {
readWriteByte = 0;
poll_status |= ONEWIRE_POLLSTAT_READ;
readWriteBitMask = 0x01;
if ( PolledOneWire::read_bit() )
readWriteByte |= readWriteBitMask;
readWriteBitMask <<= 1;
}
//
// Do a ROM skip
//
void PolledOneWire::polled_skip()
{
polled_write(0xCC); // Skip ROM
}
void PolledOneWire::polled_write_bytes(const uint8_t *buf, uint8_t count, bool power /* = 0 */) {
byteCount = min(count, ONEWIRE_MAX_READ_WRITE_BUFFER_LEN); // We will truncate if this is exceeded.
memcpy(readWriteBuffer, buf, byteCount);
byteIndex = 0;
writeBytesPower = power;
poll_status |= ONEWIRE_POLLSTAT_WRITE_BYTES;
polled_write(readWriteBuffer[byteIndex]);
byteIndex++;
}
void PolledOneWire::polled_read_bytes(uint8_t count) {
byteCount = min(count, ONEWIRE_MAX_READ_WRITE_BUFFER_LEN); // We will truncate if this is exceeded.
byteIndex = 0;
poll_status |= ONEWIRE_POLLSTAT_READ_BYTES;
polled_read();
}
//
// Do a ROM select
//
void PolledOneWire::polled_select( uint8_t rom[8])
{
uint8_t tmp[9];
tmp[0] = 0x55; // Choose ROM
memcpy( tmp+1, rom, 8 );
polled_write_bytes(tmp, 9);
}
void PolledOneWire::poll()
{
IO_REG_TYPE mask = bitmask;
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
uint8_t r;
// Note that a number of things may be happening at once. Start with lowest level
// things first. Note also that if one low level thing completes, don't move on to
// something higher level on this call. This will give the calling program time
// to do other things.
if ( poll_status & ONEWIRE_POLLSTAT_RESET ) {
// We're in the middle of a Reset
if ( bit_status == ONEWIRE_BITSTAT_RESET_WAIT_LINE_HIGH ) {
if ( ! DIRECT_READ(reg, mask) ) {
// Line still isn't high.
if ( (long) ( micros() - bitNextTime ) >= 0 ) {
// Unrecoverable error
poll_status &= ~ONEWIRE_POLLSTAT_RESET;
reset_result = false;
}
} else {
// Line is high, continue
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
interrupts();
bitNextTime = micros();
bitNextTime += 500; // Line should stay low for 500 us
bit_status = ONEWIRE_BITSTAT_RESET_WAIT_LOW;
}
return;
}
if ( bit_status == ONEWIRE_BITSTAT_RESET_WAIT_LOW ) {
if ( (long) ( micros() - bitNextTime ) < 0 )
return; // Not time yet
noInterrupts();
DIRECT_MODE_INPUT(reg, mask); // allow it to float
delayMicroseconds(80);
r = !DIRECT_READ(reg, mask);
interrupts();
reset_result = r;
bitNextTime = micros();
bitNextTime += 420; // Now wait 420 more us
bit_status = ONEWIRE_BITSTAT_RESET_WAIT_FINISH;
return;
}
if ( bit_status == ONEWIRE_BITSTAT_RESET_WAIT_FINISH ) {
if ( (long) ( micros() - bitNextTime ) < 0 )
return; // Not time yet
// We're done
poll_status &= ~ONEWIRE_POLLSTAT_RESET;
}
return;
}
if ( poll_status & ONEWIRE_POLLSTAT_WRITE ) {
PolledOneWire::write_bit( (readWriteBitMask & readWriteByte)?1:0);
readWriteBitMask <<= 1;
if (readWriteBitMask)
return;
// We're done!
if ( !writePower) {
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
DIRECT_WRITE_LOW(baseReg, bitmask);
interrupts();
}
poll_status &= ~ONEWIRE_POLLSTAT_WRITE;
return;
}
if ( poll_status & ONEWIRE_POLLSTAT_READ ) {
if ( PolledOneWire::read_bit() )
readWriteByte |= readWriteBitMask;
readWriteBitMask <<= 1;
if (readWriteBitMask)
return;
// We're done!
poll_status &= ~ONEWIRE_POLLSTAT_READ;
return;
}
if ( poll_status & ONEWIRE_POLLSTAT_WRITE_BYTES) {
polled_write(readWriteBuffer[byteIndex]);
byteIndex++;
if ( byteIndex < byteCount )
return;
// We're done!
poll_status &= ~ONEWIRE_POLLSTAT_WRITE_BYTES;
if (!writeBytesPower) {
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
DIRECT_WRITE_LOW(baseReg, bitmask);
interrupts();
}
return;
}
if ( poll_status & ONEWIRE_POLLSTAT_READ_BYTES ) {
readWriteBuffer[byteIndex] = readWriteByte;
byteIndex++;
if (byteIndex == byteCount)
// We're done!
poll_status &= ~ONEWIRE_POLLSTAT_READ_BYTES;
else
// Get next byte
polled_read();
return;
}
}
#endif