diff --git a/blood-demand.ipynb b/blood-demand.ipynb
new file mode 100644
index 0000000..939c24b
--- /dev/null
+++ b/blood-demand.ipynb
@@ -0,0 +1,404 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "512319fe",
+ "metadata": {
+ "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
+ "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
+ "execution": {
+ "iopub.execute_input": "2024-08-25T08:08:20.695484Z",
+ "iopub.status.busy": "2024-08-25T08:08:20.694925Z",
+ "iopub.status.idle": "2024-08-25T08:08:21.428588Z",
+ "shell.execute_reply": "2024-08-25T08:08:21.427565Z"
+ },
+ "papermill": {
+ "duration": 0.740563,
+ "end_time": "2024-08-25T08:08:21.431272",
+ "exception": false,
+ "start_time": "2024-08-25T08:08:20.690709",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "/kaggle/input/blood-demand-dataset/synthetic_blood_demand_data.csv\n"
+ ]
+ }
+ ],
+ "source": [
+ "# This Python 3 environment comes with many helpful analytics libraries installed\n",
+ "# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python\n",
+ "# For example, here's several helpful packages to load\n",
+ "\n",
+ "import numpy as np # linear algebra\n",
+ "import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n",
+ "\n",
+ "# Input data files are available in the read-only \"../input/\" directory\n",
+ "# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory\n",
+ "\n",
+ "import os\n",
+ "for dirname, _, filenames in os.walk('/kaggle/input'):\n",
+ " for filename in filenames:\n",
+ " print(os.path.join(dirname, filename))\n",
+ "\n",
+ "# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using \"Save & Run All\" \n",
+ "# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "f197134a",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-08-25T08:08:21.437989Z",
+ "iopub.status.busy": "2024-08-25T08:08:21.437396Z",
+ "iopub.status.idle": "2024-08-25T08:08:50.154687Z",
+ "shell.execute_reply": "2024-08-25T08:08:50.153589Z"
+ },
+ "papermill": {
+ "duration": 28.723756,
+ "end_time": "2024-08-25T08:08:50.157720",
+ "exception": false,
+ "start_time": "2024-08-25T08:08:21.433964",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/opt/conda/lib/python3.10/site-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
+ " super().__init__(**kwargs)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
Model: \"sequential\"\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[1mModel: \"sequential\"\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+ "┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n",
+ "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+ "│ lstm (LSTM) │ (None, 7, 50) │ 11,800 │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ dropout (Dropout) │ (None, 7, 50) │ 0 │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ lstm_1 (LSTM) │ (None, 50) │ 20,200 │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ dropout_1 (Dropout) │ (None, 50) │ 0 │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ dense (Dense) │ (None, 25) │ 1,275 │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ dense_1 (Dense) │ (None, 1) │ 26 │\n",
+ "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+ "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
+ "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+ "│ lstm (\u001b[38;5;33mLSTM\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m50\u001b[0m) │ \u001b[38;5;34m11,800\u001b[0m │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m50\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ lstm_1 (\u001b[38;5;33mLSTM\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m50\u001b[0m) │ \u001b[38;5;34m20,200\u001b[0m │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ dropout_1 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m50\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m) │ \u001b[38;5;34m1,275\u001b[0m │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m26\u001b[0m │\n",
+ "└─────────────────────────────────┴────────────────────────┴───────────────┘\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " Total params: 33,301 (130.08 KB)\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m33,301\u001b[0m (130.08 KB)\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " Trainable params: 33,301 (130.08 KB)\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m33,301\u001b[0m (130.08 KB)\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " Non-trainable params: 0 (0.00 B)\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Epoch 1/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 17ms/step - loss: 0.1367 - val_loss: 0.1063\n",
+ "Epoch 2/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 0.1107 - val_loss: 0.1041\n",
+ "Epoch 3/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 0.1063 - val_loss: 0.1040\n",
+ "Epoch 4/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 0.1076 - val_loss: 0.1036\n",
+ "Epoch 5/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 0.1072 - val_loss: 0.1034\n",
+ "Epoch 6/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 0.1056 - val_loss: 0.1034\n",
+ "Epoch 7/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 0.1061 - val_loss: 0.1035\n",
+ "Epoch 8/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 0.1043 - val_loss: 0.1041\n",
+ "Epoch 9/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 0.1054 - val_loss: 0.1030\n",
+ "Epoch 10/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 0.1044 - val_loss: 0.1031\n",
+ "Epoch 11/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 0.1050 - val_loss: 0.1028\n",
+ "Epoch 12/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 0.1050 - val_loss: 0.1033\n",
+ "Epoch 13/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 0.1048 - val_loss: 0.1027\n",
+ "Epoch 14/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 0.1056 - val_loss: 0.1032\n",
+ "Epoch 15/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 0.1047 - val_loss: 0.1027\n",
+ "Epoch 16/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 0.1041 - val_loss: 0.1026\n",
+ "Epoch 17/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 0.1042 - val_loss: 0.1026\n",
+ "Epoch 18/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 8ms/step - loss: 0.1035 - val_loss: 0.1026\n",
+ "Epoch 19/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 8ms/step - loss: 0.1056 - val_loss: 0.1026\n",
+ "Epoch 20/20\n",
+ "\u001b[1m46/46\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 0.1035 - val_loss: 0.1027\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1/0lEQVR4nO3deXxM5/4H8M+ZSTKTPSI7IWKnhIakaNFKG7RKqwvVClVaRYu6Vbe1domW2/oVl95bSzeletGF0kiplliKoLaiEUs2RPZ95vn9cTKTjOyTTM4k+bxfr3ll5pxnzvmeTCIfz3nOcyQhhAARERER1YhK6QKIiIiIGiKGKCIiIiIzMEQRERERmYEhioiIiMgMDFFEREREZmCIIiIiIjIDQxQRERGRGRiiiIiIiMzAEEVERERkBoYookZo3LhxCAgIMOu9CxYsgCRJdVuQlbl8+TIkScL69evrfd+SJGHBggXG1+vXr4ckSbh8+XKV7w0ICMC4cePqtJ7a/KwQNXUMUUT1SJKkaj327t2rdKlN3iuvvAJJknDx4sUK27z55puQJAknT56sx8pqLiEhAQsWLEBsbKzSpRgZguzSpUuVLoXIbDZKF0DUlHzxxRcmrz///HNERUWVWd65c+da7ee///0v9Hq9We9966238MYbb9Rq/43BmDFjsHz5cmzYsAHz5s0rt83XX3+Nbt26oXv37mbv57nnnsOoUaOg0WjM3kZVEhISsHDhQgQEBKBHjx4m62rzs0LU1DFEEdWjZ5991uT1wYMHERUVVWb5nXJycuDg4FDt/dja2ppVHwDY2NjAxob/NISGhqJdu3b4+uuvyw1RMTExiIuLw+LFi2u1H7VaDbVaXatt1EZtflaImjqeziOyMgMHDsRdd92Fo0ePon///nBwcMA///lPAMB3332Hhx9+GH5+ftBoNGjbti3efvtt6HQ6k23cOc6l9KmT//znP2jbti00Gg169+6NI0eOmLy3vDFRkiRh6tSp2LZtG+666y5oNBp07doVO3fuLFP/3r170atXL2i1WrRt2xaffPJJtcdZ/fbbb3jyySfRqlUraDQa+Pv7Y8aMGcjNzS1zfE5OTrh+/TpGjBgBJycneHp6YtasWWW+F2lpaRg3bhxcXV3h5uaGiIgIpKWlVVkLIPdGnTt3DseOHSuzbsOGDZAkCaNHj0ZBQQHmzZuH4OBguLq6wtHREffddx/27NlT5T7KGxMlhMA777yDli1bwsHBAffffz9Onz5d5r2pqamYNWsWunXrBicnJ7i4uGDIkCE4ceKEsc3evXvRu3dvAMD48eONp4wN48HKGxOVnZ2N1157Df7+/tBoNOjYsSOWLl0KIYRJu5r8XJgrJSUFEyZMgLe3N7RaLYKCgvDZZ5+Vabdx40YEBwfD2dkZLi4u6NatG/7v//7PuL6wsBALFy5E+/btodVq0bx5c9x7772Iioqqs1qp6eF/N4ms0K1btzBkyBCMGjUKzz77LLy9vQHIf3CdnJwwc+ZMODk54ZdffsG8efOQkZGBJUuWVLndDRs2IDMzEy+++CIkScIHH3yAxx9/HH///XeVPRK///47tmzZgpdffhnOzs74+OOPMXLkSFy5cgXNmzcHABw/fhyDBw+Gr68vFi5cCJ1Oh0WLFsHT07Nax71582bk5ORg8uTJaN68OQ4fPozly5fj2rVr2Lx5s0lbnU6H8PBwhIaGYunSpdi9ezf+9a9/oW3btpg8eTIAOYwMHz4cv//+O1566SV07twZW7duRURERLXqGTNmDBYuXIgNGzbg7rvvNtn3N998g/vuuw+tWrXCzZs38emnn2L06NGYOHEiMjMzsWbNGoSHh+Pw4cNlTqFVZd68eXjnnXcwdOhQDB06FMeOHcNDDz2EgoICk3Z///03tm3bhieffBJt2rRBcnIyPvnkEwwYMABnzpyBn58fOnfujEWLFmHevHmYNGkS7rvvPgBA3759y923EAKPPvoo9uzZgwkTJqBHjx7YtWsX/vGPf+D69ev46KOPTNpX5+fCXLm5uRg4cCAuXryIqVOnok2bNti8eTPGjRuHtLQ0vPrqqwCAqKgojB49GoMGDcL7778PADh79iz2799vbLNgwQJERkbihRdeQEhICDIyMvDHH3/g2LFjePDBB2tVJzVhgogUM2XKFHHnr+GAAQMEALF69eoy7XNycsose/HFF4WDg4PIy8szLouIiBCtW7c2vo6LixMARPPmzUVqaqpx+XfffScAiB9++MG4bP78+WVqAiDs7OzExYsXjctOnDghAIjly5cblw0bNkw4ODiI69evG5dduHBB2NjYlNlmeco7vsjISCFJkoiPjzc5PgBi0aJFJm179uwpgoODja+3bdsmAIgPPvjAuKyoqEjcd999AoBYt25dlTX17t1btGzZUuh0OuOynTt3CgDik08+MW4zPz/f5H23b98W3t7e4vnnnzdZDkDMnz/f+HrdunUCgIiLixNCCJGSkiLs7OzEww8/LPR6vbHdP//5TwFAREREGJfl5eWZ1CWE/FlrNBqT782RI0cqPN47f1YM37N33nnHpN0TTzwhJEky+Rmo7s9FeQw/k0uWLKmwzbJlywQA8eWXXxqXFRQUiD59+ggnJyeRkZEhhBDi1VdfFS4uLqKoqKjCbQUFBYmHH3640pqIaoqn84iskEajwfjx48sst7e3Nz7PzMzEzZs3cd999yEnJwfnzp2rcrtPP/00mjVrZnxt6JX4+++/q3xvWFgY2rZta3zdvXt3uLi4GN+r0+mwe/dujBgxAn5+fsZ27dq1w5AhQ6rcPmB6fNnZ2bh58yb69u0LIQSOHz9epv1LL71k8vq+++4zOZYdO3bAxsbG2DMFyGOQpk2bVq16AHkc27Vr17Bv3z7jsg0bNsDOzg5PPvmkcZt2dnYAAL1ej9TUVBQVFaFXr17lngqszO7du1FQUIBp06aZnAKdPn16mbYajQYqlfzPuE6nw61bt+Dk5ISOHTvWeL8GO3bsgFqtxiuvvGKy/LXXXoMQAj/99JPJ8qp+Lmpjx44d8PHxwejRo43LbG1t8corryArKwu//vorAMDNzQ3Z2dmVnppzc3PD6dOnceHChVrXRWTAEEVkhVq0aGH8o1za6dOn8dhjj8HV1RUuLi7w9PQ0DkpPT0+vcrutWrUyeW0IVLdv367xew3vN7w3JSUFubm5aNeuXZl25S0rz5UrVzBu3Di4u7sbxzkNGDAAQNnj02q1ZU4Tlq4HAOLj4+Hr6wsnJyeTdh07dqxWPQAwatQoqNVqbNiwAQCQl5eHrVu3YsiQISaB9LPPPkP37t2N4208PT2xffv2an0upcXHxwMA2rdvb7Lc09PTZH+AHNg++ugjtG/fHhqNBh4eHvD09MTJkydrvN/S+/fz84Ozs7PJcsMVo4b6DKr6uaiN+Ph4tG/f3hgUK6rl5ZdfRocOHTBkyBC0bNkSzz//fJlxWYsWLUJaWho6dOiAbt264R//+IfVT01B1o8hisgKle6RMUhLS8OAAQNw4sQJLFq0CD/88AOioqKMY0Cqc5l6RVeBiTsGDNf1e6tDp9PhwQcfxPbt2zF79mxs27YNUVFRxgHQdx5ffV3R5uXlhQcffBD/+9//UFhYiB9++AGZmZkYM2aMsc2XX36JcePGoW3btlizZg127tyJqKgoPPDAAxadPuC9997DzJkz0b9/f3z55ZfYtWsXoqKi0LVr13qbtsDSPxfV4eXlhdjYWHz//ffG8VxDhgwxGfvWv39/XLp0CWvXrsVdd92FTz/9FHfffTc+/fTTequTGh8OLCdqIPbu3Ytbt25hy5Yt6N+/v3F5XFycglWV8PLyglarLXdyysomrDQ4deoU/vrrL3z22WcYO3ascXltrp5q3bo1oqOjkZWVZdIbdf78+RptZ8yYMdi5cyd++uknbNiwAS4uLhg2bJhx/bfffovAwEBs2bLF5BTc/PnzzaoZAC5cuIDAwEDj8hs3bpTp3fn2229x//33Y82aNSbL09LS4OHhYXxdkxnoW7dujd27dyMzM9OkN8pwuthQX31o3bo1Tp48Cb1eb9IbVV4tdnZ2GDZsGIYNGwa9Xo+XX34Zn3zyCebOnWvsCXV3d8f48eMxfvx4ZGVloX///liwYAFeeOGFejsmalzYE0XUQBj+x1/6f/gFBQX497//rVRJJtRqNcLCwrBt2zYkJCQYl1+8eLHMOJqK3g+YHp8QwuQy9ZoaOnQoioqKsGrVKuMynU6H5cuX12g7I0aMgIODA/7973/jp59+wuOPPw6tVltp7YcOHUJMTEyNaw4LC4OtrS2WL19usr1ly5aVaatWq8v0+GzevBnXr183Webo6AgA1ZraYejQodDpdFixYoXJ8o8++giSJFV7fFtdGDp0KJKSkrBp0ybjsqKiIixfvhxOTk7GU723bt0yeZ9KpTJOgJqfn19uGycnJ7Rr1864nsgc7IkiaiD69u2LZs2aISIiwnhLki+++KJeT5tUZcGCBfj555/Rr18/TJ482fjH+K677qryliOdOnVC27ZtMWvWLFy/fh0uLi743//+V6uxNcOGDUO/fv3wxhtv4PLly+jSpQu2bNlS4/FCTk5OGDFihHFcVOlTeQDwyCOPYMuWLXjsscfw8MMPIy4uDqtXr0aXLl2QlZVVo30Z5ruKjIzEI488gqFDh+L48eP46aefTHqXDPtdtGgRxo8fj759++LUqVP46quvTHqwAKBt27Zwc3PD6tWr4ezsDEdHR4SGhqJNmzZl9j9s2DDcf//9ePPNN3H58mUEBQXh559/xnfffYfp06ebDCKvC9HR0cjLyyuzfMSIEZg0aRI++eQTjBs3DkePHkVAQAC+/fZb7N+/H8uWLTP2lL3wwgtITU3FAw88gJYtWyI+Ph7Lly9Hjx49jOOnunTpgoEDByI4OBju7u74448/8O2332Lq1Kl1ejzUxChzUSARCVHxFAddu3Ytt/3+/fvFPffcI+zt7YWfn594/fXXxa5duwQAsWfPHmO7iqY4KO9yctxxyX1FUxxMmTKlzHtbt25tcsm9EEJER0eLnj17Cjs7O9G2bVvx6aefitdee01otdoKvgslzpw5I8LCwoSTk5Pw8PAQEydONF4yX/ry/IiICOHo6Fjm/eXVfuvWLfHcc88JFxcX4erqKp577jlx/Pjxak9xYLB9+3YBQPj6+paZVkCv14v33ntPtG7dWmg0GtGzZ0/x448/lvkchKh6igMhhNDpdGLhwoXC19dX2Nvbi4EDB4o///yzzPc7Ly9PvPbaa8Z2/fr1EzExMWLAgAFiwIABJvv97rvvRJcuXYzTTRiOvbwaMzMzxYwZM4Sfn5+wtbUV7du3F0uWLDGZcsFwLNX9ubiT4WeyoscXX3whhBAiOTlZjB8/Xnh4eAg7OzvRrVu3Mp/bt99+Kx566CHh5eUl7OzsRKtWrcSLL74oEhMTjW3eeecdERISItzc3IS9vb3o1KmTePfdd0VBQUGldRJVRhLCiv4bS0SN0ogRI3h5ORE1OhwTRUR16s5btFy4cAE7duzAwIEDlSmIiMhC2BNFRHXK19cX48aNQ2BgIOLj47Fq1Srk5+fj+PHjZeY+IiJqyDiwnIjq1ODBg/H1118jKSkJGo0Gffr0wXvvvccARUSNDnuiiIiIiMzAMVFEREREZmCIIiIiIjIDx0RZkF6vR0JCApydnWt02wUiIiJSjhACmZmZ8PPzK3MD7NIYoiwoISEB/v7+SpdBREREZrh69SpatmxZ4XqGKAsy3JLg6tWrcHFxUbgaIiIiqo6MjAz4+/ub3IS7PAxRFmQ4hefi4sIQRURE1MBUNRSHA8uJiIiIzMAQRURERGQGhigiIiIiM3BMFBERWS2dTofCwkKly6BGxtbWFmq1utbbYYgiIiKrI4RAUlIS0tLSlC6FGik3Nzf4+PjUah5HhigiIrI6hgDl5eUFBwcHTlhMdUYIgZycHKSkpAAAfH19zd4WQxQREVkVnU5nDFDNmzdXuhxqhOzt7QEAKSkp8PLyMvvUHgeWExGRVTGMgXJwcFC4EmrMDD9ftRlzxxBFRERWiafwyJLq4ueLIYqIiIjIDAxRREREViwgIADLli2rdvu9e/dCkiRe2VgPGKKIiIjqgCRJlT4WLFhg1naPHDmCSZMmVbt93759kZiYCFdXV7P2V10Ma7w6r0HKyi9CYlou/N0doLWt/WRhRERUe4mJicbnmzZtwrx583D+/HnjMicnJ+NzIQR0Oh1sbKr+M+zp6VmjOuzs7ODj41Oj95B52BPVAN2/dC8e/GgfLqZkKV0KEREV8/HxMT5cXV0hSZLx9blz5+Ds7IyffvoJwcHB0Gg0+P3333Hp0iUMHz4c3t7ecHJyQu/evbF7926T7d55Ok+SJHz66ad47LHH4ODggPbt2+P77783rr+zh2j9+vVwc3PDrl270LlzZzg5OWHw4MEmoa+oqAivvPIK3Nzc0Lx5c8yePRsREREYMWKE2d+P27dvY+zYsWjWrBkcHBwwZMgQXLhwwbg+Pj4ew4YNQ7NmzeDo6IiuXbtix44dxveOGTMGnp6esLe3R/v27bFu3Tqza7EUhqgGyM9VCwC4nparcCVERPVDCIGcgiJFHkKIOjuON954A4sXL8bZs2fRvXt3ZGVlYejQoYiOjsbx48cxePBgDBs2DFeuXKl0OwsXLsRTTz2FkydPYujQoRgzZgxSU1MrbJ+Tk4OlS5fiiy++wL59+3DlyhXMmjXLuP7999/HV199hXXr1mH//v3IyMjAtm3banWs48aNwx9//IHvv/8eMTExEEJg6NChxikFpkyZgvz8fOzbtw+nTp3C+++/b+ytmzt3Ls6cOYOffvoJZ8+exapVq+Dh4VGreiyBp/MaID83e5y4lo5EhigiaiJyC3XoMm+XIvs+sygcDnZ18+dy0aJFePDBB42v3d3dERQUZHz99ttvY+vWrfj+++8xderUCrczbtw4jB49GgDw3nvv4eOPP8bhw4cxePDgctsXFhZi9erVaNu2LQBg6tSpWLRokXH98uXLMWfOHDz22GMAgBUrVhh7hcxx4cIFfP/999i/fz/69u0LAPjqq6/g7++Pbdu24cknn8SVK1cwcuRIdOvWDQAQGBhofP+VK1fQs2dP9OrVC4DcG2eN2BPVAPm6yjOtJqTnKVwJERHVhCEUGGRlZWHWrFno3Lkz3Nzc4OTkhLNnz1bZE9W9e3fjc0dHR7i4uBhvY1IeBwcHY4AC5FudGNqnp6cjOTkZISEhxvVqtRrBwcE1OrbSzp49CxsbG4SGhhqXNW/eHB07dsTZs2cBAK+88greeecd9OvXD/Pnz8fJkyeNbSdPnoyNGzeiR48eeP3113HgwAGza7Ek9kQ1QH5u8um8BPZEEVETYW+rxplF4Yrtu644OjqavJ41axaioqKwdOlStGvXDvb29njiiSdQUFBQ6XZsbW1NXkuSBL1eX6P2dXma0hwvvPACwsPDsX37dvz888+IjIzEv/71L0ybNg1DhgxBfHw8duzYgaioKAwaNAhTpkzB0qVLFa35TuyJaoD83Ip7ohiiiKiJkCQJDnY2ijwsOXP6/v37MW7cODz22GPo1q0bfHx8cPnyZYvtrzyurq7w9vbGkSNHjMt0Oh2OHTtm9jY7d+6MoqIiHDp0yLjs1q1bOH/+PLp06WJc5u/vj5deeglbtmzBa6+9hv/+97/GdZ6enoiIiMCXX36JZcuW4T//+Y/Z9VgKe6IaIEOISuTpPCKiBq19+/bYsmULhg0bBkmSMHfu3Ep7lCxl2rRpiIyMRLt27dCpUycsX74ct2/frlaAPHXqFJydnY2vJUlCUFAQhg8fjokTJ+KTTz6Bs7Mz3njjDbRo0QLDhw8HAEyfPh1DhgxBhw4dcPv2bezZswedO3cGAMybNw/BwcHo2rUr8vPz8eOPPxrXWROGqAbIcHVeckYeinR62KjZoUhE1BB9+OGHeP7559G3b194eHhg9uzZyMjIqPc6Zs+ejaSkJIwdOxZqtRqTJk1CeHg41OqqT2X279/f5LVarUZRURHWrVuHV199FY888ggKCgrQv39/7Nixw3hqUafTYcqUKbh27RpcXFwwePBgfPTRRwDkua7mzJmDy5cvw97eHvfddx82btxY9wdeS5JQ+qRoI5aRkQFXV1ekp6fDxcWlzrar1wt0nPsTCnUC+994AC2Ke6aIiBqDvLw8xMXFoU2bNtBqtUqX0yTp9Xp07twZTz31FN5++22ly7GIyn7Oqvv3mz1RDZBKJcHHVYurqblISMtliCIiolqJj4/Hzz//jAEDBiA/Px8rVqxAXFwcnnnmGaVLs2o8D9RAGac54OByIiKqJZVKhfXr16N3797o168fTp06hd27d1vlOCRrwp6oBqqF8Qo9Di4nIqLa8ff3x/79+5Uuo8FhT1QD5Vs8uDwxnT1RRERESmCIaqD82BNFRESkKIaoBoqzlhMRESmLIaqBKplwkyGKiIhICQxRDZTh6rzbOYXILdApXA0REVHTwxDVQLlobeCkkS+uTGBvFBERUb1jiGqgJEkyXqHHcVFERI3HwIEDMX36dOPrgIAALFu2rNL3SJKEbdu21XrfdbWdpoIhqgEzjoviFXpERIobNmwYBg8eXO663377DZIk4eTJkzXe7pEjRzBp0qTalmdiwYIF6NGjR5nliYmJGDJkSJ3u607r16+Hm5ubRfdRXxiiGjDDFXrX2RNFRKS4CRMmICoqCteuXSuzbt26dejVqxe6d+9e4+16enrCwcGhLkqsko+PDzQaTb3sqzFgiGrA/Fx5hR4RkbV45JFH4OnpifXr15ssz8rKwubNmzFhwgTcunULo0ePRosWLeDg4IBu3brh66+/rnS7d57Ou3DhAvr37w+tVosuXbogKiqqzHtmz56NDh06wMHBAYGBgZg7dy4KCwsByD1BCxcuxIkTJyBJEiRJMtZ85+m8U6dO4YEHHoC9vT2aN2+OSZMmISsry7h+3LhxGDFiBJYuXQpfX180b94cU6ZMMe7LHFeuXMHw4cPh5OQEFxcXPPXUU0hOTjauP3HiBO6//344OzvDxcUFwcHB+OOPPwDI9wAcNmwYmjVrBkdHR3Tt2hU7duwwu5aq8LYvDZgvJ9wkoqZCCKAwR5l92zoAklRlMxsbG4wdOxbr16/Hm2++Can4PZs3b4ZOp8Po0aORlZWF4OBgzJ49Gy4uLti+fTuee+45tG3bFiEhIVXuQ6/X4/HHH4e3tzcOHTqE9PR0k/FTBs7Ozli/fj38/Pxw6tQpTJw4Ec7Oznj99dfx9NNP488//8TOnTuxe/duAICrq2uZbWRnZyM8PBx9+vTBkSNHkJKSghdeeAFTp041CYp79uyBr68v9uzZg4sXL+Lpp59Gjx49MHHixCqPp7zjMwSoX3/9FUVFRZgyZQqefvpp7N27FwAwZswY9OzZE6tWrYJarUZsbCxsbW0BAFOmTEFBQQH27dsHR0dHnDlzBk5OTjWuo7oYohow44Sb7IkiosauMAd4z0+Zff8zAbBzrFbT559/HkuWLMGvv/6KgQMHApBP5Y0cORKurq5wdXXFrFmzjO2nTZuGXbt24ZtvvqlWiNq9ezfOnTuHXbt2wc9P/n689957ZcYxvfXWW8bnAQEBmDVrFjZu3IjXX38d9vb2cHJygo2NDXx8fCrc14YNG5CXl4fPP/8cjo7y8a9YsQLDhg3D+++/D29vbwBAs2bNsGLFCqjVanTq1AkPP/wwoqOjzQpR0dHROHXqFOLi4uDv7w8A+Pzzz9G1a1ccOXIEvXv3xpUrV/CPf/wDnTp1AgC0b9/e+P4rV65g5MiR6NatGwAgMDCwxjXUBE/nNWCG03kJabkQQihcDRERderUCX379sXatWsBABcvXsRvv/2GCRMmAAB0Oh3efvttdOvWDe7u7nBycsKuXbtw5cqVam3/7Nmz8Pf3NwYoAOjTp0+Zdps2bUK/fv3g4+MDJycnvPXWW9XeR+l9BQUFGQMUAPTr1w96vR7nz583LuvatSvUarXxta+vL1JSUmq0r9L79Pf3NwYoAOjSpQvc3Nxw9uxZAMDMmTPxwgsvICwsDIsXL8alS5eMbV955RW888476NevH+bPn2/WQP6aYE9UA+ZTPMVBXqEeaTmFaOZop3BFREQWYusg9wgpte8amDBhAqZNm4aVK1di3bp1aNu2LQYMGAAAWLJkCf7v//4Py5YtQ7du3eDo6Ijp06ejoKCgzsqNiYnBmDFjsHDhQoSHh8PV1RUbN27Ev/71rzrbR2mGU2kGkiRBr9dbZF+AfGXhM888g+3bt+Onn37C/PnzsXHjRjz22GN44YUXEB4eju3bt+Pnn39GZGQk/vWvf2HatGkWqYU9UQ2Y1lYNDyc5OPEKPSJq1CRJPqWmxKMa46FKe+qpp6BSqbBhwwZ8/vnneP75543jo/bv34/hw4fj2WefRVBQEAIDA/HXX39Ve9udO3fG1atXkZiYaFx28OBBkzYHDhxA69at8eabb6JXr15o37494uPjTdrY2dlBp6v8bhedO3fGiRMnkJ2dbVy2f/9+qFQqdOzYsdo114Th+K5evWpcdubMGaSlpaFLly7GZR06dMCMGTPw888/4/HHH8e6deuM6/z9/fHSSy9hy5YteO211/Df//7XIrUCVhCiVq5ciYCAAGi1WoSGhuLw4cMVtj19+jRGjhyJgIAASJJU7uRj+/btw7Bhw+Dn51fhpGGGqxHufCxZssTYxrCP0o/FixfXxSHXqZJ76HFwORGRNXBycsLTTz+NOXPmIDExEePGjTOua9++PaKionDgwAGcPXsWL774osmVZ1UJCwtDhw4dEBERgRMnTuC3337Dm2++adKmffv2uHLlCjZu3IhLly7h448/xtatW03aBAQEIC4uDrGxsbh58yby8/PL7GvMmDHQarWIiIjAn3/+iT179mDatGl47rnnjOOhzKXT6RAbG2vyOHv2LMLCwtCtWzeMGTMGx44dw+HDhzF27FgMGDAAvXr1Qm5uLqZOnYq9e/ciPj4e+/fvx5EjR9C5c2cAwPTp07Fr1y7ExcXh2LFj2LNnj3GdJSgaojZt2oSZM2di/vz5OHbsGIKCghAeHl7hudScnBwEBgZi8eLFFQ6Gy87ORlBQEFauXFnhfhMTE00ea9euhSRJGDlypEm7RYsWmbSzVHdgbXDWciIi6zNhwgTcvn0b4eHhJuOX3nrrLdx9990IDw/HwIED4ePjgxEjRlR7uyqVClu3bkVubi5CQkLwwgsv4N133zVp8+ijj2LGjBmYOnUqevTogQMHDmDu3LkmbUaOHInBgwfj/vvvh6enZ7nTLDg4OGDXrl1ITU1F79698cQTT2DQoEFYsWJFzb4Z5cjKykLPnj1NHsOGDYMkSfjuu+/QrFkz9O/fH2FhYQgMDMSmTZsAAGq1Grdu3cLYsWPRoUMHPPXUUxgyZAgWLlwIQA5nU6ZMQefOnTF48GB06NAB//73v2tdb0UkoeCI5NDQUPTu3dv4gej1evj7+2PatGl44403Kn1vQEAApk+fXu6lnQaSJGHr1q1V/oCOGDECmZmZiI6OrtH2q5KRkQFXV1ekp6fDxcXF7O1UZuEPp7Fu/2W8OCAQc4ZYLm0TEdWXvLw8xMXFoU2bNtBqtUqXQ41UZT9n1f37rVhPVEFBAY4ePYqwsLCSYlQqhIWFISYmpt7qSE5Oxvbt241XTpS2ePFiNG/eHD179sSSJUtQVFRU6bby8/ORkZFh8rC0kiv0eDqPiIioPil2dd7Nmzeh0+nKnFf19vbGuXPn6q2Ozz77DM7Oznj88cdNlr/yyiu4++674e7ujgMHDhjPbX/44YcVbisyMtLYpVhffIvnikrk6TwiIqJ61eSnOFi7dq1x8FxpM2fOND7v3r077Ozs8OKLLyIyMrLC+wrNmTPH5H0ZGRkmc11Ygp9byVxRREREVH8UC1EeHh5Qq9VlrkpITk6udAbVuvTbb7/h/PnzxgFrlQkNDUVRUREuX75c4aWdGo2m3m/caDidl5yZjyKdHjZqxS+4JCIiahIU+4trZ2eH4OBgk8Hcer0e0dHR5c6+aglr1qxBcHAwgoKCqmwbGxsLlUoFLy+veqis+jydNbBRSdDpBVIyy16iSkTUUPFODGRJdfHzpejpvJkzZyIiIgK9evVCSEgIli1bhuzsbIwfPx4AMHbsWLRo0QKRkZEA5MHoZ86cMT6/fv06YmNj4eTkhHbt2gGQL5u8ePGicR+GeTDc3d3RqlUr4/KMjAxs3ry53BlcY2JicOjQIeNdomNiYjBjxgw8++yzaNasmcW+H+ZQqyR4u2hxPS0Xiem5xtN7REQNlWEG7JycHNjb8980soycHPmG1nfOuF4Tioaop59+Gjdu3MC8efOQlJSEHj16YOfOncbB5leuXIFKVdJZlpCQgJ49expfL126FEuXLsWAAQOMd3f+448/cP/99xvbGMYoRUREmNx1euPGjRBCYPTo0WXq0mg02LhxIxYsWID8/Hy0adMGM2bMMBnvZE1auNnjelouEtLyENxa6WqIiGpHrVbDzc3NOGegg4ODccZvotoSQiAnJwcpKSlwc3Mzue9fTSk6T1RjVx/zRAHAqxuP47vYBMwZ0gkvDmhrsf0QEdUXIQSSkpKQlpamdCnUSLm5ucHHx6fcgF7dv99N/uq8xoC3fiGixkaSJPj6+sLLywuFhYVKl0ONjK2tba16oAwYohoBv+Jbv/AmxETU2KjV6jr5Y0dkCbwevhEo6YliiCIiIqovDFGNgC9v/UJERFTvGKIagRbFPVGp2QXIK9QpXA0REVHTwBDVCLjY28DBTh4zwNu/EBER1Q+GqEZAkiReoUdERFTPGKIaCV9eoUdERFSvGKIaCcO4qEQOLiciIqoXDFGNRMkVeuyJIiIiqg8MUY2En5t8Oi+Bc0URERHVC4aoRsIwsJw9UURERPWDIaqRMAwsT0zPA+8pTUREZHkMUY2EoScqp0CH9FzerJOIiMjSGKIaCa2tGu6OdgB4+xciIqL6wBDViBgHl3NcFBERkcUxRDUihmkOEnmFHhERkcUxRDUihgk3r/N0HhERkcUxRDUiJVfosSeKiIjI0hiiGhE/3vqFiIio3jBENSKGgeW8CTEREZHlMUQ1IoaeqOSMPOj0nHCTiIjIkhiiGhEvZy3UKglFeoEbmflKl0NERNSoMUQ1ImqVBB8X3oiYiIioPjBENTKGK/Q44SYREZFlMUQ1MrxCj4iIqH4wRDUyvrxCj4iIqF4wRDUyhlnLOeEmERGRZTFENTKG++cl8HQeERGRRTFENTKGCTfZE0VERGRZDFGNjF9xT9TNrALkFeoUroaIiKjxYohqZNwcbGFvqwYAJKXzlB4REZGlMEQ1MpIkGa/Q41xRRERElsMQ1QgZTuklsCeKiIjIYhiiGiE/9kQRERFZHENUI2SY5oBX6BEREVkOQ1QjZJhw8zrniiIiIrIYhqhGyDCwPJGn84iIiCyGIaoRMtyEOCEtF0IIhashIiJqnBiiGiHD1XnZBTpk5BUpXA0REVHjpHiIWrlyJQICAqDVahEaGorDhw9X2Pb06dMYOXIkAgICIEkSli1bVqbNvn37MGzYMPj5+UGSJGzbtq1Mm3HjxkGSJJPH4MGDTdqkpqZizJgxcHFxgZubGyZMmICsrKzaHm69sLdTo5mDLQAOLiciIrIURUPUpk2bMHPmTMyfPx/Hjh1DUFAQwsPDkZKSUm77nJwcBAYGYvHixfDx8Sm3TXZ2NoKCgrBy5cpK9z148GAkJiYaH19//bXJ+jFjxuD06dOIiorCjz/+iH379mHSpEnmHagCSm5EzBBFRERkCTZK7vzDDz/ExIkTMX78eADA6tWrsX37dqxduxZvvPFGmfa9e/dG7969AaDc9QAwZMgQDBkypMp9azSaCoPY2bNnsXPnThw5cgS9evUCACxfvhxDhw7F0qVL4efnV63jU5Kfmz3OJGYggVfoERERWYRiPVEFBQU4evQowsLCSopRqRAWFoaYmBiL73/v3r3w8vJCx44dMXnyZNy6dcu4LiYmBm5ubsYABQBhYWFQqVQ4dOiQxWurC5xwk4iIyLIU64m6efMmdDodvL29TZZ7e3vj3LlzFt334MGD8fjjj6NNmza4dOkS/vnPf2LIkCGIiYmBWq1GUlISvLy8TN5jY2MDd3d3JCUlVbjd/Px85OfnG19nZGRY7BiqYrhCL5G3fiEiIrIIRU/nKWXUqFHG5926dUP37t3Rtm1b7N27F4MGDTJ7u5GRkVi4cGFdlFhrvq5yT9R19kQRERFZhGKn8zw8PKBWq5GcnGyyPDk5ucKxSpYSGBgIDw8PXLx4EQDg4+NTZnB7UVERUlNTK61tzpw5SE9PNz6uXr1q0bor08KNt34hIiKyJMVClJ2dHYKDgxEdHW1cptfrER0djT59+tRrLdeuXcOtW7fg6+sLAOjTpw/S0tJw9OhRY5tffvkFer0eoaGhFW5Ho9HAxcXF5KEU3+IQlZSeB72eE24SERHVNUVP582cORMRERHo1asXQkJCsGzZMmRnZxuv1hs7dixatGiByMhIAPJg9DNnzhifX79+HbGxsXByckK7du0AAFlZWcYeJQCIi4tDbGws3N3d0apVK2RlZWHhwoUYOXIkfHx8cOnSJbz++uto164dwsPDAQCdO3fG4MGDMXHiRKxevRqFhYWYOnUqRo0a1SCuzAMAb2cNVBJQqBO4mZUPLxet0iURERE1LkJhy5cvF61atRJ2dnYiJCREHDx40LhuwIABIiIiwvg6Li5OACjzGDBggLHNnj17ym1j2E5OTo546KGHhKenp7C1tRWtW7cWEydOFElJSSZ13bp1S4wePVo4OTkJFxcXMX78eJGZmVmjY0tPTxcARHp6eo2/L3Xhnvd2i9azfxTH4lMV2T8REVFDVN2/35IQvLmapWRkZMDV1RXp6emKnNobueoAjsbfxr/H3I2h3Xzrff9EREQNUXX/fit+2xeyHMMVepwrioiIqO4xRDVihrmiOGs5ERFR3WOIasT82BNFRERkMQxRjZgv54oiIiKyGIaoRsww4eZ1ns4jIiKqcwxRjZhhYPnNrHzkF+kUroaIiKhxYYhqxNwd7aCxkT/iJN6ImIiIqE4xRDVikiTxCj0iIiILYYhq5PzceIUeERGRJTBENXK+rrxCj4iIyBIYoho54+k8jokiIiKqUwxRjRwn3CQiIrIMhqhGztATlciB5URERHWKIaqR48ByIiIiy2CIauQMA8sz84uQkVeocDVERESNB0NUI+eosYGrvS0AntIjIiKqSwxRTUDJFXo8pUdERFRXGKKaAF6hR0REVPcYopoAXqFHRERU9xiimgBfXqFHRERU5xiimgA/V46JIiIiqmsMUU2AcWA5T+cRERHVGYaoJsC3eGB5Unoe9HqhcDVERESNA0NUE+DjqoUkAQU6PW5m5ytdDhERUaPAENUE2KpV8HLWAOAVekRERHWFIaqJKBkXxcHlREREdYEhqokouUKPPVFERER1gSGqifDjXFFERER1iiGqifAt7olK5FxRREREdYIhqokwjIm6zoHlREREdYIhqokwnM5L5Ok8IiKiOsEQ1UQYeqJuZOWjoEivcDVEREQNH0NUE9Hc0Q52NioIASRn8JQeERFRbTFENRGSJMHPlVfoERER1RWGqCbE1zhXFEMUERFRbTFENSEls5bzdB4REVFtMUQ1IZxwk4iIqO4wRDUhhp6oRN76hYiIqNYYopoQXw4sJyIiqjMMUU1IC+OYKIYoIiKi2mKIakJ8i0NURl4RsvKLFK6GiIioYVM8RK1cuRIBAQHQarUIDQ3F4cOHK2x7+vRpjBw5EgEBAZAkCcuWLSvTZt++fRg2bBj8/PwgSRK2bdtmsr6wsBCzZ89Gt27d4OjoCD8/P4wdOxYJCQkm7Qz7KP1YvHhxXRyyYpw0NnDW2gDg7V+IiIhqS9EQtWnTJsycORPz58/HsWPHEBQUhPDwcKSkpJTbPicnB4GBgVi8eDF8fHzKbZOdnY2goCCsXLmywm0cO3YMc+fOxbFjx7BlyxacP38ejz76aJm2ixYtQmJiovExbdo08w/WSrQw3oiYIYqIiKg2bJTc+YcffoiJEydi/PjxAIDVq1dj+/btWLt2Ld54440y7Xv37o3evXsDQLnrAWDIkCEYMmRIhft0dXVFVFSUybIVK1YgJCQEV65cQatWrYzLnZ2dKwxrDZWvqxbnkjJ5hR4REVEtKdYTVVBQgKNHjyIsLKykGJUKYWFhiImJqdda0tPTIUkS3NzcTJYvXrwYzZs3R8+ePbFkyRIUFVU+jig/Px8ZGRkmD2vjx8HlREREdUKxnqibN29Cp9PB29vbZLm3tzfOnTtXb3Xk5eVh9uzZGD16NFxcXIzLX3nlFdx9991wd3fHgQMHMGfOHCQmJuLDDz+scFuRkZFYuHBhfZRtNs5aTkREVDcUPZ2ntMLCQjz11FMQQmDVqlUm62bOnGl83r17d9jZ2eHFF19EZGQkNBpNudubM2eOyfsyMjLg7+9vmeLNxFnLiYiI6oZiIcrDwwNqtRrJyckmy5OTk+tlHJIhQMXHx+OXX34x6YUqT2hoKIqKinD58mV07Nix3DYajabCgGUtDDchTuRNiImIiGpFsTFRdnZ2CA4ORnR0tHGZXq9HdHQ0+vTpY9F9GwLUhQsXsHv3bjRv3rzK98TGxkKlUsHLy8uitVmaccLN9DwIIRSuhoiIqOFS9HTezJkzERERgV69eiEkJATLli1Ddna28Wq9sWPHokWLFoiMjAQgD0Y/c+aM8fn169cRGxsLJycntGvXDgCQlZWFixcvGvcRFxeH2NhYuLu7o1WrVigsLMQTTzyBY8eO4ccff4ROp0NSUhIAwN3dHXZ2doiJicGhQ4dw//33w9nZGTExMZgxYwaeffZZNGvWrD6/RXXO20ULSQIKivS4lV0ADyfr7jkjIiKyWkJhy5cvF61atRJ2dnYiJCREHDx40LhuwIABIiIiwvg6Li5OACjzGDBggLHNnj17ym1j2E5F2wAg9uzZI4QQ4ujRoyI0NFS4uroKrVYrOnfuLN577z2Rl5dXo2NLT08XAER6erq53x6L6P1OlGg9+0dx4uptpUshIiKyOtX9+y0JwXM6lpKRkQFXV1ekp6dXOeaqPg1fuR8nrqZh9bPBGHxX45oHi4iIqLaq+/db8du+UP1rwSv0iIiIao0hqgniFXpERES1xxDVBPmVukKPiIiIzMMQ1QT5ufJ0HhERUW0xRDVBhp6oRN76hYiIyGwMUU2Qb/HA8uTMPBTq9ApXQ0RE1DAxRDVBHo4a2KlVEAJIzmBvFBERkTkYopoglUqCj3FcFEMUERGRORiimijf4hDFaQ6IiIjMwxDVRBluRHydV+gRERGZhSGqiTIMLucVekREROZhiGqijBNusieKiIjILAxRTZSfK2ctJyIiqg2GqCaKPVFERES1wxDVRBnGRKXnFiI7v0jhaoiIiBoehqgmykVrC2eNDQBOc0BERGQOs0LU1atXce3aNePrw4cPY/r06fjPf/5TZ4WR5Rl6ozjhJhERUc2ZFaKeeeYZ7NmzBwCQlJSEBx98EIcPH8abb76JRYsW1WmBZDkcF0VERGQ+s0LUn3/+iZCQEADAN998g7vuugsHDhzAV199hfXr19dlfWRBvrxCj4iIyGxmhajCwkJoNBoAwO7du/Hoo48CADp16oTExMS6q44sqoXxdB57ooiIiGrKrBDVtWtXrF69Gr/99huioqIwePBgAEBCQgKaN29epwWS5Rh6ojiwnIiIqObMClHvv/8+PvnkEwwcOBCjR49GUFAQAOD77783nuYj61cyJoqn84iIiGrKxpw3DRw4EDdv3kRGRgaaNWtmXD5p0iQ4ODjUWXFkWX6lTucJISBJksIVERERNRxm9UTl5uYiPz/fGKDi4+OxbNkynD9/Hl5eXnVaIFmOj6scovKL9LidU6hwNURERA2LWSFq+PDh+PzzzwEAaWlpCA0Nxb/+9S+MGDECq1atqtMCyXI0Nmp4OMkXCHBwORERUc2YFaKOHTuG++67DwDw7bffwtvbG/Hx8fj888/x8ccf12mBZFm8Qo+IiMg8ZoWonJwcODs7AwB+/vlnPP7441CpVLjnnnsQHx9fpwWSZRnnimKIIiIiqhGzQlS7du2wbds2XL16Fbt27cJDDz0EAEhJSYGLi0udFkiWZbhCL5ETbhIREdWIWSFq3rx5mDVrFgICAhASEoI+ffoAkHulevbsWacFkmUZrtC7zp4oIiKiGjFrioMnnngC9957LxITE41zRAHAoEGD8Nhjj9VZcWR5JRNusieKiIioJswKUQDg4+MDHx8fXLt2DQDQsmVLTrTZAPlxYDkREZFZzDqdp9frsWjRIri6uqJ169Zo3bo13Nzc8Pbbb0Ov19d1jWRBhjFRyRl5KNLxsyMiIqous3qi3nzzTaxZswaLFy9Gv379AAC///47FixYgLy8PLz77rt1WiRZjqeTBrZqCYU6geTMfLQoDlVERERUObNC1GeffYZPP/0Ujz76qHFZ9+7d0aJFC7z88ssMUQ2ISiXB20WLa7dzkZiWyxBFRERUTWadzktNTUWnTp3KLO/UqRNSU1NrXRTVL8MpPV6hR0REVH1mhaigoCCsWLGizPIVK1age/futS6K6pdf8T30eIUeERFR9Zl1Ou+DDz7Aww8/jN27dxvniIqJicHVq1exY8eOOi2QLM/QE8Ur9IiIiKrPrJ6oAQMG4K+//sJjjz2GtLQ0pKWl4fHHH8fp06fxxRdf1HWNZGG+xhDFnigiIqLqMnueKD8/vzIDyE+cOIE1a9bgP//5T60Lo/rDmxATERHVnFk9UdS4lMxazhBFRERUXYqHqJUrVyIgIABarRahoaE4fPhwhW1Pnz6NkSNHIiAgAJIkYdmyZWXa7Nu3D8OGDYOfnx8kScK2bdvKtBFCYN68efD19YW9vT3CwsJw4cIFkzapqakYM2YMXFxc4ObmhgkTJiArK6u2h2uVDGOibucUIrdAp3A1REREDYOiIWrTpk2YOXMm5s+fj2PHjiEoKAjh4eFISUkpt31OTg4CAwOxePFi+Pj4lNsmOzsbQUFBWLlyZYX7/eCDD/Dxxx9j9erVOHToEBwdHREeHo68vJIxQWPGjMHp06cRFRWFH3/8Efv27cOkSZNqd8BWykVrA0c7NQAggb1RRERE1SIJIUR1Gz/++OOVrk9LS8Ovv/4Kna56vRmhoaHo3bu3cboEvV4Pf39/TJs2DW+88Ual7w0ICMD06dMxffr0CttIkoStW7dixIgRxmVCCPj5+eG1117DrFmzAADp6enw9vbG+vXrMWrUKJw9exZdunTBkSNH0KtXLwDAzp07MXToUFy7dg1+fn7VOr6MjAy4uroiPT0dLi4u1XqPUh788FdcSMnCFxNCcF97T6XLISIiUkx1/37XqCfK1dW10kfr1q0xduzYam2roKAAR48eRVhYWEkxKhXCwsIQExNTk7JqJC4uDklJSSb7dXV1RWhoqHG/MTExcHNzMwYoAAgLC4NKpcKhQ4cq3HZ+fj4yMjJMHg2F4Qq9RF6hR0REVC01ujpv3bp1dbbjmzdvQqfTwdvb22S5t7c3zp07V2f7uVNSUpJxP3fu17AuKSkJXl5eJuttbGzg7u5ubFOeyMhILFy4sI4rrh/GK/R4Oo+IiKhaFB9Y3pjMmTMH6enpxsfVq1eVLqnaDFfocZoDIiKi6lEsRHl4eECtViM5OdlkeXJycoWDxuuCYduV7dfHx6fM4PaioiKkpqZWWptGo4GLi4vJo6EwXKHHW78QERFVj2Ihys7ODsHBwYiOjjYu0+v1iI6ONt5KxhLatGkDHx8fk/1mZGTg0KFDxv326dMHaWlpOHr0qLHNL7/8Ar1ej9DQUIvVpiTD/fN4E2IiIqLqMXvG8rowc+ZMREREoFevXggJCcGyZcuQnZ2N8ePHAwDGjh2LFi1aIDIyEoA8GP3MmTPG59evX0dsbCycnJzQrl07AEBWVhYuXrxo3EdcXBxiY2Ph7u6OVq1aQZIkTJ8+He+88w7at2+PNm3aYO7cufDz8zNexde5c2cMHjwYEydOxOrVq1FYWIipU6di1KhR1b4yr6EpPbBcCAFJkhSuiIiIyMoJhS1fvly0atVK2NnZiZCQEHHw4EHjugEDBoiIiAjj67i4OAGgzGPAgAHGNnv27Cm3Tent6PV6MXfuXOHt7S00Go0YNGiQOH/+vEldt27dEqNHjxZOTk7CxcVFjB8/XmRmZtbo2NLT0wUAkZ6eXqP3KSG3oEi0nv2jaD37R5Gala90OURERIqp7t/vGs0TRTXTkOaJAoDgt6NwK7sA21+5F139XJUuh4iISBEWmSeKGjfD4PIEzhVFRERUJYYoMvItHlzOGxETERFVjSGKjAw9UbxCj4iIqGoMUWTkVzxrOW/9QkREVDWGKDIqGRPFnigiIqKqMESRkeHWL5y1nIiIqGoMUWTUorgnKikjDzo9Z74gIiKqDEMUGXk6a2CjkqDTC6RksjeKiIioMgxRZKRWSfB2kQeXc1wUERFR5RiiyIThCj1OuElERFQ5higywSv0iIiIqochikzwCj0iIqLqYYgiEy2KT+dx1nIiIqLKMUSRiZKeKIYoIiKiyjBEkQnDmKgrt3KQV6hTuBoiIiLrxRBFJgI9HeHuaIeMvCK8u/2s0uUQERFZLYYoMqG1VePDp4IAAF8cjMf3JxIUroiIiMg6MURRGQM7emHq/e0AAHP+dxKXbmQpXBEREZH1YYiick0Pa497At2RXaDDy18eQ24Bx0cRERGVxhBF5bJRq/Dx6J7wcNLgfHIm5n73p9IlERERWRWGKKqQl7MWy0f3hEoCvj16Dd/8cVXpkoiIiKwGQxRVqk/b5njtoY4AgLnb/sTZxAyFKyIiIrIODFFUpckD2mJAB0/kF+nx8lfHkJlXqHRJREREimOIoiqpVBI+eroHfF21iLuZjTlbTkEIoXRZREREimKIompxd7TDimfuho1Kwo8nE/HFwXilSyIiIlIUQxRVW3DrZnhjSCcAwNs/nsGJq2nKFkRERKQghiiqkQn3tkF4V28U6gSmbDiG9ByOjyIioqaJIYpqRJIkfPBEEFq5O+Da7Vy8tjmW46OIiKhJYoiiGnO1t8W/x9wNOxsVdp9NwX9/+1vpkoiIiOodQxSZ5a4Wrpg/rAsA4P2d53HkcqrCFREREdUvhigy2zMhrTC8hx90eoGpG47hVla+0iURERHVG4YoMpskSXjvsW5o6+mI5Ix8TN8UC52e46OIiKhpYIiiWnHU2GDVs8HQ2qrw24WbWPHLRaVLIiIiqhcMUVRrHbyd8e6IbgCAZdF/4fcLNxWuiIiIyPIYoqhOjAxuiVG9/SEE8OrG40jOyFO6JCIiIotiiKI6s+DRrujs64Jb2QWYtuE4inR6pUsiIiKyGIYoqjNaWzX+PeZuOGlscPhyKpb+/JfSJREREVkMQxTVqTYejnh/ZHcAwOpfLyH6bLLCFREREVkGQxTVuYe7+2Jc3wAAwMxvTuBqao6yBREREVkAQxRZxD+HdkaQvxvScwsxdcMxFBRxfBQRETUuVhGiVq5ciYCAAGi1WoSGhuLw4cMVtj19+jRGjhyJgIAASJKEZcuW1Xibly9fhiRJ5T42b95sbFfe+o0bN9bZcTdmdjYqrHymJ1ztbXHiWjre23FW6ZKIiIjqlOIhatOmTZg5cybmz5+PY8eOISgoCOHh4UhJSSm3fU5ODgIDA7F48WL4+PiYtU1/f38kJiaaPBYuXAgnJycMGTLEZFvr1q0zaTdixIg6Pf7GrGUzB3z4VBAAYP2By9h+MlHhioiIiOqOJIRQ9D4doaGh6N27N1asWAEA0Ov18Pf3x7Rp0/DGG29U+t6AgABMnz4d06dPr/U2e/bsibvvvhtr1qwxLpMkCVu3bjU7OGVkZMDV1RXp6elwcXExaxuNweKfzmH1r5fgpLHBD9PuRRsPR6VLIiIiqlB1/34r2hNVUFCAo0ePIiwszLhMpVIhLCwMMTEx9bbNo0ePIjY2FhMmTCizbsqUKfDw8EBISAjWrl2LyjJnfn4+MjIyTB4EzHqoA0IC3JGVX4TJXx5FXqFO6ZKIiIhqTdEQdfPmTeh0Onh7e5ss9/b2RlJSUr1tc82aNejcuTP69u1rsnzRokX45ptvEBUVhZEjR+Lll1/G8uXLK9x3ZGQkXF1djQ9/f3+zjqGxsVGrsPyZnmjuaIdzSZlY8P1ppUsiIiKqNcXHRCktNzcXGzZsKLcXau7cuejXrx969uyJ2bNn4/XXX8eSJUsq3NacOXOQnp5ufFy9etWSpTco3i5a/N+onpAkYOORq3h/5zncyspXuiwiIiKzKRqiPDw8oFarkZxsOiFjcnJyhYPG63qb3377LXJycjB27Ngqtx0aGopr164hP7/8P/4ajQYuLi4mDypxb3sPTB/UAQCwau8l9Fn8C/6x+QROJ6QrXBkREVHNKRqi7OzsEBwcjOjoaOMyvV6P6Oho9OnTp162uWbNGjz66KPw9PSsctuxsbFo1qwZNBqNWbUR8Mqgdvi/UT3QvaUrCor02Hz0Gh7++Hc89UkMdv6ZyPvtERFRg2GjdAEzZ85EREQEevXqhZCQECxbtgzZ2dkYP348AGDs2LFo0aIFIiMjAcgDx8+cOWN8fv36dcTGxsLJyQnt2rWr1jYNLl68iH379mHHjh1l6vrhhx+QnJyMe+65B1qtFlFRUXjvvfcwa9YsS347Gj1JkjC8Rws8GuSHY1fSsG5/HH76MwmH41JxOC4VLdzsMbZPazzd2x9uDnZKl0tERFQhxac4AIAVK1ZgyZIlSEpKQo8ePfDxxx8jNDQUADBw4EAEBARg/fr1AOSJMtu0aVNmGwMGDMDevXurtU2Df/7zn/jyyy9x+fJlqFSmnXI7d+7EnDlzcPHiRQgh0K5dO0yePBkTJ04s07YinOKgehLTc/HlwXhsOHQFt3MKAQBaWxUe69kS4/sFoIO3s8IVEhFRU1Ldv99WEaIaK4aomskr1OH7EwlYt/8yziaWTA/Rr11zjO/bBvd38oJaJSlYIRERNQUMUVaAIco8QggcjkvF+gOXset0EvTFP6Gt3B0wtk9rPNXbHy5aW2WLJCKiRoshygowRNXetds5+OJgPDYevor0XPlUn4OdGk8Et0RE3wC09XRSuEIiImpsGKKsAENU3ckpKMK24wlYfyAOfyVnGZcP6OCJ8f0C0L+9J1Q81UdERHWAIcoKMETVPSEEDly6hXX74xB9LgWGn95AD0dE9A3AyOCWcNIoftEpERE1YAxRVoAhyrLib2Xj85h4fHPkKjLziwAAzhobPNnLH08Et0RnX2dIEnuniIioZhiirABDVP3Iyi/ClmPXsH7/Zfx9M9u4vL2XE4b38MOjQS3QqrmDghUSEVFDwhBlBRii6pdeL7Dvwg1sPHwVv5xPQUFRyeznPVu5YXiQHx7u7gdPZ844T0REFWOIsgIMUcrJyCvErj+T8P2JBOy/eNM4TYJKAvq188DwHi0Q3tUbzpwqgYiI7sAQZQUYoqxDSmYetp9MxHexCYi9mmZcrrFRYVBnLzwa1AIDO3pCa6tWrkgiIrIaDFFWgCHK+ly+mY0fTiRgW+x1XLpRMn7KWWuDIXf5YHiPFrgnsDlnRiciasIYoqwAQ5T1EkLgTGIGvo9NwPcnEpCYnmdc5+mswbDufhjeww/dW7ryCj8ioiaGIcoKMEQ1DHq9wJHLqfjuRAJ2nEpEWvFNkAEgoLkDHu3RAsN7+HF2dCKiJoIhygowRDU8BUV6/HbhBr6LTUDUmWTkFuqM6+5q4YLhQS3Qp21zua1Oj8IiPYr0AgU6PYp0AoU6ffGj7PMinR4FpZ6X16ZQp4ebvR383e3h7+6AVsUPd0c79ogREdUThigrwBDVsGXnF2H32WR8F5uAfX/dQJFeuV8VRzu1SajyL/W1ZTN7DoonIqpDDFFWgCGq8UjNLsCOU4n4PjYBf9/Mgq1aBVu1CjZqCXbFXw3LbMt5bqNSwc6m5LmtTfH7ip/bquS2arUKt7MLcCU1B1dSc3A1NQdJGXmo6rfUx0VrEq5aNbeHfzP5uaezhr1YREQ1wBBlBRiiqC7kFepwPS3XGKqu3MrB1ds5uJKaiyu3spFdoKv0/VpblTFQBXg44pnQVhzfRURUCYYoK8AQRZYmhMDtnEKTnqsrt4qf385BQlou7jwL6aSxwYdPBeGhrj7KFE1EZOUYoqyAxULUtaPAyY3AkA8AnqahShTq9Ego7sW6kpqD744n4PDlVADAjLAOmPZAO6g4JxYRkQmGKCtgkRCVlw582AUoyAKe/AzoOqJutktNQqFOj3d+PIPPYuIBAOFdvfGvp3rASWOjcGVERNajun+/VfVYE9UFrSvQd5r8PHohUFSgbD3UoNiqVVg4/C58MLI77NQq7DqdjMf/vR/xt7KrfjMREZlgiGqI+kwFHL2A1L+Bo+uUroYaoKd6+2Pji/fAy1mDv5Kz8OiK/fjtwg2lyyIialAYohoijRNw/xz5+a/vy6f4iGro7lbN8MO0e9HD3w3puYWIWHsY/9l3CTzDT0RUPQxRDVXPsYBHByDnFrD//5SuhhoobxctNk66B08Gt4ReAO/tOIcZm2KRV1j5tAlERMQQ1XCpbYCwhfLzmJVA+nVl66EGS2urxgdPdMfCR7tCrZKwLTYBT6w+gOtpuUqXRkRk1RiiGrKOQ4BWfYGiPGDPe0pXQw2YJEmI6BuALyaEoJmDLf68noFHl/+Ow3GpSpdGRGS1GKIaMkkCHnpHfh77FZD0p7L1UIPXt60Hvp96L7r4uuBWdgGe+e9BfHkwXumyiIisEkNUQ9cyGOj6GAAB7J6vdDXUCPi7O+B/k/vike6+KNILvLXtT8zZcgoFRXqlSyMisioMUY3BoHmAyha4uBu4tEfpaqgRsLdTY/nonpg9uBMkCfj68BWM/u9BpGTmKV0aEZHVYIhqDNwDgd4vyM+j5gF69hhQ7UmShMkD22LtuN5w1trgaPxtPLp8P05cTVO6NCIiq8AQ1Vj0/wegcQGSTgKnNitdDTUi93f0wndT+qGdlxOSMvLw5Ccx+N/Ra0qXRUSkOIaoxsKxOXDvDPn5L28DhTztQnUn0NMJW1/ui7DOXigo0uO1zSew6IczKNKx15OImi6GqMbknsmASwsg/Spw+BOlq6FGxllri/881wuvPNAOALB2fxwi1h3G7Wzev5GImiaGqMbE1h544C35+b5/ATmc44fqlkolYeZDHbH62bvhYKfG/ou38OjK33E2MUPp0oiI6h1DVGPT/WnA+y4gPx3Yt1TpaqiRGnyXL7a83Bet3B1wNTUXj//7AHacSlS6LCKieiUJ3m3UYjIyMuDq6or09HS4uLjU344vRgNfPi5PezDtD6BZQP3tm5qUtJwCTN1wHL9fvAkAmHBvG3T1K/lZL/2vS+l/aO78Z0dU8EKYroGL1hYdfZzRurkj1CqpltUTEZWvun+/GaIsSLEQBQCfjwD+3gPc9QTwxJr63Tc1KUU6Pd7feQ7//S2u3vaptVWhvZczOvk4o6OPMzr7uqCjjzM8nDT1VoOShBDIyCtCSkYeUjLzkZyRB7VKwoNdvOFgZ6N0eUQNHkOUFVA0RCWeBD7pD0AAE/cALe6u3/1Tk/PjyQRsOXYdRfqSf1Lu7CuSSi2QTJabtjRdJ38VAriZlY/zyZnIKyz/qkAPJzt08pEDVUcfZ3T2cUF7bydobdU1PyAFlBeOkjPykZKZh5Tir8kZ8vL8cmaQd9HaYHRoK0T0CYCfm70CR0DUODBEWQFFQxQAbH0JOPE10PpeYNyPpn/BiBoonV7gSmoOzidl4GxiJs4nZeJcUgbiU3NQ3r9mKgkIaO6ITr7O6Ojtgk6+cg+WfzMHqOrhlKAQAoU6gZyCItzIzDeGI+PXaoSjirhobeDtooWXiwbXb+fi8q0cAIBaJWFoN19MuLcNevi7WejIiBovhigroHiISrsKLA8GdPnA6E1Ax8H1XwNRPckpKMKF5CycS8rAuaRMnEvMxPnkTKRWMAWDg50aHbzlQCWfFnSBvZ0aeYU65BbqkF/8Na9Qj9wCHfKK5Od5hTq5TYEOeUXyuvwinbFNboHcrmSZHjp9zf6ZNYQjbxctvJw18Cr+Ki/TwMtZDk6le9j0eoHocylY8/vfOPh3yZW5wa2bYcK9bfBQF2/YqHktEVF1MERZAcVDFABEzQf2LwM8OwEv7QfUHC9BTYcQAjey8uVAlZQph6ukDFxIyVLkhsqu9rbGMGQIR4ZQVFE4MsfphHSs+T0OP5xIQKFO/ie+ZTN7jOsbgKd6+8NFa1sXh0PUaDWoELVy5UosWbIESUlJCAoKwvLlyxESElJu29OnT2PevHk4evQo4uPj8dFHH2H69Ok13ubAgQPx66+/mrznxRdfxOrVq42vr1y5gsmTJ2PPnj1wcnJCREQEIiMjYWNTvSBiFSEqNw34uAeQexsY9jEQHKFMHURWpEinx+Vb2TiXJIers4mZuJCSiSKdgNZWBXs7NbQ2atjbqaGxUcvLbNXQ2qqL16mgLdXGsF5jqy5pZysv15Z6bWdTvz1BKRl5+OJgPL48GI/bOYUAACeNDZ7q5Y/x/QLg7+5Qr/UQNRTV/futeLfEpk2bMHPmTKxevRqhoaFYtmwZwsPDcf78eXh5eZVpn5OTg8DAQDz55JOYMWNGrbY5ceJELFq0yPjawaHkHxSdToeHH34YPj4+OHDgABITEzF27FjY2trivffeq8PvgIXZuwH9Xwd2zQH2vAd0ewKwc1S6KiJF2ahVaOfljHZezniku9LVWI6XixavPdQRU+5vhy3HrmPt/jhcTMnC2v1xWH8gDg918cGE+9qgV+tmZQb3E1HVFO+JCg0NRe/evbFixQoAgF6vh7+/P6ZNm4Y33nij0vcGBARg+vTpZXqiqrPNgQMHokePHli2bFm52/7pp5/wyCOPICEhAd7e3gCA1atXY/bs2bhx4wbs7OyqPDar6IkCgKICYGVv4PZl4P43gQGvK1cLESlGCIFf/7qBNb/H4bcLN43Lu7d0xYR722BoN1/YctwUUbX/fiv621JQUICjR48iLCzMuEylUiEsLAwxMTEW3+ZXX30FDw8P3HXXXZgzZw5ycnKM62JiYtCtWzdjgAKA8PBwZGRk4PTp0+XuOz8/HxkZGSYPq2BjBwyaJz/f/39AVoqy9RCRIiRJwsCOXvhiQih+ntEfo3r7w85GhZPX0vHqxljc9/4e/HvvRaTl8H6IRNWh6Om8mzdvQqfTmQQVAPD29sa5c+csus1nnnkGrVu3hp+fH06ePInZs2fj/Pnz2LJlCwAgKSmp3G0Y1pUnMjISCxcuNKtui+v6OHBgBZBwDNi7GHjkQ6UrIiIFdfB2xuKR3fGP8I746tAVfB4Tj6SMPHyw8zyWR1/EE8EtMb5fAAI9nep0vzq9QFZ+EbLyi5CZV4isvCJk5hdBCAFJkqCSJKgkQC1Jxa/lezaqJJisV0kSJEmezsGwrLz1KkmCnY0KzR3teMqS6pziY6KUMmnSJOPzbt26wdfXF4MGDcKlS5fQtm1bs7Y5Z84czJw50/g6IyMD/v7+ta61TkgS8NDbwPqHgaPrgXsmAx7tla6KiBTW3EmDVwa1x4sDAvHDiUR8+tvfOJeUiS8OxuOLg/EY1MkLE+5tgz5tmyO/SI8MQ/DJKwlCGXlFpZYVIrP4eWbpoFTcPiu/SJHjtLdVo42HI9p4OiLQwxFtPBwR6OmENh6OcLXn1YpkHkVDlIeHB9RqNZKTk02WJycnw8fHp163GRoaCgC4ePEi2rZtCx8fHxw+fLjMNgBUuB2NRgONxopvOxFwL9BhCPDXT8DuBcCor5SuiIishMZGjSeCW2Lk3S0Qc+kW1vweh+hzKcaHWiXVeL6rytipVXDW2sBJawMnjQ3UKgl6IaDXA3ohIIT8VVfquWG9EAJ64zLD61LL9CXPhQAK9XrkFupwJjEDZxLLDrNo7mgnB6xSwSrQ0xGt3B0azGz3pAxFQ5SdnR2Cg4MRHR2NESNGAJAHgUdHR2Pq1Kn1us3Y2FgAgK+vLwCgT58+ePfdd5GSkmK8oi8qKgouLi7o0qWLWbVZhbAFwIVdwLkfgfgYoHUfpSsiIisiSRL6tvNA33Ye+PtGFtbtv4xvj15DbqGueL08TYKzxgbOWls4aW3kMFT82llrWGcDJ5PXpm3rM5wU6vS4mpqDuJvZiLuZjb9vZuPvG1mIu5mN5Ix83MouwK3sAvwRf/uO7wXQws0ebTwc0bY4XBkefm72vAk2KX86b+bMmYiIiECvXr0QEhKCZcuWITs7G+PHjwcAjB07Fi1atEBkZCQAeeD4mTNnjM+vX7+O2NhYODk5oV27dtXa5qVLl7BhwwYMHToUzZs3x8mTJzFjxgz0798f3bvL1zs/9NBD6NKlC5577jl88MEHSEpKwltvvYUpU6ZYd29TVbw6AXePlU/pRc0FJkTxdjBEVK5ATye8PeIuzBnaCWk5hXDW2sDRzqZebpdTl2zVKgR6OpU7vis7v8gYruJKhau/b2QjM78I127n4trtXJOrGQHAzkaFgOYOCPRwQhtPOWS19XREWy8nTmbahCg+xQEArFixwjgxZo8ePfDxxx8bT68NHDgQAQEBWL9+PQDg8uXLaNOmTZltDBgwAHv37q3WNq9evYpnn30Wf/75J7Kzs+Hv74/HHnsMb731lsmljPHx8Zg8eTL27t0LR0dHREREYPHixQ1rss3yZCYBH98NFGYDT34GdB2hdEVERFZFCIFb2QVyuLqRjUs3sxB3Qw5a8bdyUKCreMZ7L2eNHKq85HDVzssJbT2d4Ouq5eD2BqJBzVjeWFltiAKAPZHAr4sB90Dg5UPyNAhERFQlnV4gIS3XeFrw0o0s/H0jG5duZCE5I7/C9znYqRFo7LUqCVcBHg7Q2HDslTVhiLICVh2i8jPl3qjsFGDIEiB0UtXvISKiSmXmFeLSjWxcSpHDlfzIxuWb2SiqYGC+SgL83R1KBauSoNXMkf/BVQJDlBWw6hAFAEfWANtnAg7NgVeOA1pXpSsiImqUCnV6XEnNKQ5X2bhoCFkpWcisZNoHd0c7tHJ3gJ+bFj4u9vBz08LX1R4+rlr4uWnh5azlAHcLYIiyAlYfonRFwL/vAW5dAO57rWRWcyIiqhdCCNzIysellGxcLA5VhtOD19Nyq3y/WiXB21kDH1ctfN3s4eeqhY+r/NXXzR6+rlp4OGkYtGqIIcoKWH2IAoBz24GNzwA2WmDaMcC1hdIVERERgJyCIvx9IxvXbucgMT0Piel5SEjLRVLx86SMvGrN3WWjkuDtooWvSdCSe7R8XbVo5mAnT0WhtYGNld07sVCnx+2cAtzOLkRqdgHScgqQmlOA29kFSM0uRFpOAeY/2rXOJ0yt7t9vxac4IIV1HAq06gNciQH2vAeMWKl0RUREBMDBzgZ3tXDFXS3KH2qh0wvczMo3BquE9DwkpuUiMaP4a3oekjPyUKQXuJ6WK/ds3TEXVtl9qosDla3xq4vJVxu42Bvm/7I1fa21hbOm4ikwCnV6pOUU4nZOAVKz5SB0u8zrAqTmFMrPswsqPdVp8PL97RSbdZ4hqqmTJOChd4BPBwGxXwF9Xga8uypdFRERVUFd3MPk7aKtsE2RTo8bWflISMsr7sHKLe7VykVCmhyy0nMLkVMgT6aaU6BDToGu0qsMq+KksTEGL42tCum5ci9SZp55t/xRSYCbgx2aOdjC3dEOzRyKH452cHe0hZuDcvNyMUQR0LIX0GUEcGYbEDUPePZ/SldERER1wEatKj5tZ19pu0Kd3niPw4y8QmTklboHYvHzjNziZfmmrzOK2+QXyXNnGe+RmJ5XZj+SBLjZ28oBqDgINXO487UcjuSvdnDR2lrtBK8MUSQbNE8eH3VxN3BpD9D2fqUrIiKiemKrVskBphZTKuQX6UyCV0ZuEfIKdXArFZJc7G0b1SB3hiiSNW8L9J4AHFot90a1+RVQWdcAQyIisl4aGzU0Tmp4ODXgW6PVEP9KUon+/wA0LkDSSeDEBoAXblJN6XVKV0BEVG84xYEFNYgpDu7027+A6EXyc40L0Lyd/PBoL/dWGV7bOSpbJ1mXa0flHsyE48Dw5cBdI5WuiIjIbJzigMxzz8vAlYPAhSggPwNIOCY/7uTsB3gUB6rm7YuDVjvAtRWg5o9Vk5EaJ4fu01tKlv3vBaCoAOgxWrm6iIjqAXuiLKhB9kQZFOYBt+OAWxeBmxeAW5fkmc1vXQRyblX8PpUt4N6mOFi1Le7BKg5ajh7ypRnU8OWkAvuWAof/A+gLAUhAj2fkdbFfya+H/R8QHKFklUREZmFPFNWOrRbw6iw/7pSTahqqDCEr9RJQlAfc/Et+3EnjWtJ75R8KtH8QcGtl+WOhulOYJwen35YCeenysrYPAA8uAny6AXo9YOsAHPkv8MMrgK4ACJmobM1ERBbCnigLatA9UebQ64GMa8XB6qL81RC00q4CKOdHzaOjHKbahQGt+wI2TeeqjgZFrwf+/J986i79irzM+y45PLUbZNpWCODnt4CYFfLrh94F+k6t33qJiGqB986zAk0uRFWmMFceP3PrApByVp6L6tphQOhL2tg6Am36y3+U2z8INAtQrFwqJe43ORQlxsqvnf2AB94CgkYBKnX57xEC+OVt+UIFAHhgLtB/Vr2US0RUWwxRVoAhqgq5t+UwdXG3/MhKNl3fvH2pXqp+8ilGqj8p54Dd84G/dsqv7ZyBe6fLFx/YOVRvG79+AOx5V37e/3Xg/n9yXBwRWT2GKCvAEFUDQgBJp4CLUcCF3cDVQ4AoNeeQrQMQcJ8cqNqHAe6BytXa2GUmA3vfA459LvcUqmyA4PHAgNmAk2fNt/f7MjmMAUC/V4GwhQxSRGTVGKKsAENULeSmAX/vlUPVxWggM9F0vXvb4l6qB4GAfoBt5feFomrIz5LHMe3/GCjMlpd1ekQOPR7tarftg6uBnbPl56EvAYMXM0gRkdViiLICDFF1RAgg+XSpXqqDgL7U3cBttKV6qR6Up1ag6tMVAbFfAnveKzml2qIX8NA7QOs+dbefP9YCP86QnwePBx7+kLcWIiKrxBBlBRiiLCQvo7iXqngsVcZ10/VurQHfoJIpGry6yKf/1LaKlGu1hAAu/CzPNH7jnLysWQAQtgDoMsIyPUXHvwK+mwJAAD3GAI8ur3hwOhGRQhiirABDVD0QQr7a72KUPMv6lYPFkz/eQW0HeHQAPDuVBCuvznLgaoq9IQnHgZ/nApd/k1/bN5PHPPWaANiYfxf3ajm5Gdj6ojzm7a4ngMc+4Sz3RGRVGKKsAEOUAvIzgauH5WB146z8NeVcyRifO9k6AJ4dS0KVZ3HvlYtf4xyzczse+OUd4NQ38mu1BrjnJeDemYC9W/3VceY74Nvn5dOynR8FRq6xfHgjIqomhigrwBBlJfR6eYLIlHNAypniYHVWnlVdl1/+ezSuxT1WnUoCllcX+dY1liYEUJQPFGTL4a8gp9TXnOLlxV+Nz8tpU7qdoU1BFoyTnnZ/Wp7vSalZ48//BHwzVp7VvMNg4MnPOI0FEVkFhigrwBBl5XRF8v0BSwerlLPyDOulp1cozcEDcG0JQMiX/wtR/NCbPlB6WUXPSy0r3b4oz3QS0roWcB/w0NuAX0/L7aO6LuwGNo2Rj7ntA8DTX1V/DioiIgthiLICDFENVFG+fD/AG6V7rs7Ip8LKu3WNJak1cqiwdQTsHEs9d5BPRdo5Fn91AOycSp6X28YR0LiYN9eTJf39K/D1KLm3LOA+YPRGQOOkdFVE1IQxRFkBhqhGpiBbDlbZNwFJJY+ZklTyA6Wemzwk03alHybvkUq+2mjl0GPr0HQGXMfHAF89CRRkAv73AGM2A1r+zhCRMhiirABDFFENXPsD+OJxID8daBEMPPs/+apBqpoQjfNCCCKFVPfvdxO8tpuIrFLLXkDE93Jwun4U+OxRICdV6aqsW146cHAVsPxu4G0v4MeZQPr1qt9nTXRFwJVDQEZi1W2JrAx7oiyIPVFEZkg+XRygbgJeXYGx2wAnL6Wrsi43zgOH/wPEfl12+g61nTwj/L0zABdfZeqrjsI8IPYrYP//AWnxgMoW6DEa6Deddx0gxfF0nhVgiCIy043zcpDKSpInSR37vWUCgRBA7m0gKwXIvgG4tym++tIK6XXyDPOHPgH+3lOy3LMTEDJJrn3fUiB+v7zcRgv0el4OJc7eipRcrvxM+RZAMStLbjNk6yBfWADIYwPvGinPXebdRbk6qUljiLICDFFEtXDrkhykMq4BzdoAET8Abv7Ve29hrvwHOiul+Gvp58VfM5OB7BR5nqrSfLoDnR4GOg4FfLopP9YoNw04/iVw5L/A7cvFCyW5vtAXgTb9S2oUAojbJ98H8epBeZmNPdB7ghymlLwyMycVOLRaDoF5afIyl5ZAv1eAns8BSSeB3/4lB0WDjg8D970GtAxWpGRquhiirABDFFEt3Y4HPhsmn+5xbQWM+lLuqTCEoPLCUVaKPDi9JrRu8lis25dhMo2Fayug01A5sLTuW7/3X0w5KweOk5tKemm0bsDdzwG9X5Dvc1gRIYBLv8hh6vof8jJbB7nHqu8rgGNzS1dfIiMBOLACOLqu5DiatwfunQ50e6rsTPWJJ4DfPpRntTd8FoEDgftmAQH3Kh9qqUlgiLICDFFEdSD9mtwjlXqpZu9Ta+TTWE6Gh9cdX32Kn3sBNhr5PVk3gL92Aud3AJf2AEW5JdvTugLtw+VQ1S4M0DjX3TEa6HXy/g+tlnuUDLy6AqGT5NBRk8lIhZBv0r3nXfl+iYA8n1joi0CfqYCDe93WX9qtS8D+ZfK4LcP9LH2D5NN0nYdVfePpG38Bv38kh0jD5LctQ4D+s4D2DzFMkUUxRFkBhiiiOpKZBGx6Vp4GwdHjjjB0Z0gqfq51rd0f2oIceezRuR3AXz8BObdK1qnt5NNoHYt7qWo7XisnFTj+BXDkUyDtirxMUsmnFUNerH0PjBDAX7vkMJV0Ul5m5wz0eRm45+W6vW9i0qninqRtJTPvt+4H3DcTaDuo5sdxOx448DFw7IuS2zR5d5O312V41WGMyAwMUVaAIYqojul1yvzR1OvkG1uf3y6Hqjt7xfzuLj7t97B8n8XqBoXk08Wn7L4p6fWybwbcHSGPY6rr+xoKAZzbDuxdDCSfkpdpXIE+U+QbUWtdzd/2lYNlxzS1D5fDTqt7alc3IAfpmJXyoPSCLHlZ83byVYjdn67fU63U6DFEWQGGKKJGSAj55tXntsun/a4dMV3fLEAOU52GyrOv3znrvK5Ift+hT4D430uWe3crPmX3JGBrb9lj0OuBcz8AeyKBG2flZVo3oO9UIPSl6p+qFAK4GC2HpysH5GWSCuj6mBxufLrVfe05qfL0DgdXlQxQd/UH+r0K9HzW8t87ahIYoqwAQxRRE5CZBJz/SQ5Gf/9acsoJAOzdgQ7h8ik/v57Aqc3AkTXyFYcAIKmBzo/IwaVVn/of56PXy6fd9i4Gbp4vqbnfK0DviRXfw1CvA85+L5+2M5weVNkCPZ6Rw0x9zPNkmCrhwAr5KksAcPSSe9V6Pc/bBlGtMERZAYYooiYmPwu4FC2f8ruwS56DqjwOzYHgcfIfe2uYl0qvA/7cAvy6GLh1UV7m0FyeFqH3CyWD2YsK5IHe+5eVtLN1kCf37DMFcG1R/7UX5snjyfZ/DKQXjyfTusrBNPQlyw6ep0aLIcoKMEQRNWG6IuBKjNxDdW67PE2DT3f5D/tdIwFbrdIVlqUrAv78Vu6Zuh0nL3P0lE/NSWp5gHdG8W1ltG7yVX4hL9bvlAkV0RXKPX2/fQjcuiAvs3UEeo0H+k4DnH2UrY/qhhBAfoZ8JW1W8VxvHYeWXGFbRxpUiFq5ciWWLFmCpKQkBAUFYfny5QgJCSm37enTpzFv3jwcPXoU8fHx+OijjzB9+vQabTM1NRXz58/Hzz//jCtXrsDT0xMjRozA22+/DVfXkoGVUjld619//TVGjRpVreNiiCIiAPI//Hnptb9isL7oiuQep1/fl8NfaU7e8vQIvcZbZpqH2tLrgLM/AL8tla8UBABI8gzuKhv5wgSVTalHbV/byHNdaZyLH67yV61L8evir9ri5XX8x77W9HpApfBtdIWQLxbISimZ7y37xh3Pk+XglJ0CFOWZvv/VE5XPm2aG6v79tqlwTT3ZtGkTZs6cidWrVyM0NBTLli1DeHg4zp8/Dy+vsvfLysnJQWBgIJ588knMmDHDrG0mJCQgISEBS5cuRZcuXRAfH4+XXnoJCQkJ+Pbbb022tW7dOgwePNj42s3NrU6Pn4iaAEmq22kELE1tA/QcA3R/CojdAMSsACDJV/AFPWOdvWgGKjXQdYQ8/cGFKDlMXT1kOueXktSasiHLELCMgat0AHORB+sX5RU/8uVjKcov9bqCr4XVaKcvLA6C9vKgfFutfIrW1r7UslIP4zKHkrY22rLLDG1V6nICUXFYyk4pCUc1/XzsnEvmedMVWeazqgbFe6JCQ0PRu3dvrFixAgCg1+vh7++PadOm4Y033qj0vQEBAZg+fXqZnihztrl582Y8++yzyM7Oho2NnC0lScLWrVsxYsQIs46NPVFERAoTAsi+Kf+R1hfJPVX6olKPO19Xp80drwvz5IHu+RnFj0wgL6PUssySaRmoYnZO8uljQzhyNMz95ln2eU0mnTVDg+iJKigowNGjRzFnzhzjMpVKhbCwMMTExNTrNg3fKEOAMpgyZQpeeOEFBAYG4qWXXsL48ePLPc0HAPn5+cjPL7kyJyMjw6xjICKiOiJJyt4z0ECvMw1VJiEro2zoyssoWSdEcW+PVv5qo7njq+G5fTnrNJW/V20njycrzJF7pgpz5eeFecVfc+UAarI8t1T74jalH6Xb63XyRQrGCXEN4chTXuboVbLczlHpT6nGFA1RN2/ehE6ng7e36R3Gvb29ce7cuXrb5s2bN/H2229j0qRJJssXLVqEBx54AA4ODvj555/x8ssvIysrC6+88kq524mMjMTChQvNqpuIiBoxlVo+pduQTutSlRQfE6W0jIwMPPzww+jSpQsWLFhgsm7u3LnG5z179kR2djaWLFlSYYiaM2cOZs6cabJtf/9q3nWeiIiIGhRFh+R7eHhArVYjOTnZZHlycjJ8fMy7HLUm28zMzMTgwYPh7OyMrVu3wta28tsGhIaG4tq1ayan7ErTaDRwcXExeRAREVHjpGiIsrOzQ3BwMKKjo43L9Ho9oqOj0adPH4tuMyMjAw899BDs7Ozw/fffQ6ut+mqT2NhYNGvWDBqNlV2iSkRERPVO8dN5M2fOREREBHr16oWQkBAsW7YM2dnZGD9+PABg7NixaNGiBSIjIwHIA8fPnDljfH79+nXExsbCyckJ7dq1q9Y2DQEqJycHX375JTIyMoyDwD09PaFWq/HDDz8gOTkZ99xzD7RaLaKiovDee+9h1qxZ9f0tIiIiIiukeIh6+umncePGDcybNw9JSUno0aMHdu7caRwYfuXKFahKTQSWkJCAnj17Gl8vXboUS5cuxYABA7B3795qbfPYsWM4dOgQABiDl0FcXBwCAgJga2uLlStXYsaMGRBCoF27dvjwww8xceJES347iIiIqIFQfJ6oxozzRBERETU81f37rfBc70REREQNE0MUERERkRkYooiIiIjMwBBFREREZAaGKCIiIiIzMEQRERERmYEhioiIiMgMDFFEREREZlB8xvLGzDCPqeGWMkRERGT9DH+3q5qPnCHKgjIzMwEA/v7+CldCRERENZWZmQlXV9cK1/O2Lxak1+uRkJAAZ2dnSJJUZ9vNyMiAv78/rl692iRuJ9OUjpfH2ng1pePlsTZeTeV4hRDIzMyEn5+fyf1778SeKAtSqVRo2bKlxbbv4uLSqH+I79SUjpfH2ng1pePlsTZeTeF4K+uBMuDAciIiIiIzMEQRERERmYEhqgHSaDSYP38+NBqN0qXUi6Z0vDzWxqspHS+PtfFqasdbFQ4sJyIiIjIDe6KIiIiIzMAQRURERGQGhigiIiIiMzBEEREREZmBIcpKrVy5EgEBAdBqtQgNDcXhw4crbb9582Z06tQJWq0W3bp1w44dO+qp0tqJjIxE79694ezsDC8vL4wYMQLnz5+v9D3r16+HJEkmD61WW08Vm2/BggVl6u7UqVOl72mon2tAQECZY5UkCVOmTCm3fUP7TPft24dhw4bBz88PkiRh27ZtJuuFEJg3bx58fX1hb2+PsLAwXLhwocrt1vT3vj5UdqyFhYWYPXs2unXrBkdHR/j5+WHs2LFISEiodJvm/C7Uh6o+13HjxpWpe/DgwVVu1xo/V6Dq4y3vd1iSJCxZsqTCbVrrZ2spDFFWaNOmTZg5cybmz5+PY8eOISgoCOHh4UhJSSm3/YEDBzB69GhMmDABx48fx4gRIzBixAj8+eef9Vx5zf3666+YMmUKDh48iKioKBQWFuKhhx5CdnZ2pe9zcXFBYmKi8REfH19PFddO165dTer+/fffK2zbkD/XI0eOmBxnVFQUAODJJ5+s8D0N6TPNzs5GUFAQVq5cWe76Dz74AB9//DFWr16NQ4cOwdHREeHh4cjLy6twmzX9va8vlR1rTk4Ojh07hrlz5+LYsWPYsmULzp8/j0cffbTK7dbkd6G+VPW5AsDgwYNN6v76668r3aa1fq5A1cdb+jgTExOxdu1aSJKEkSNHVrpda/xsLUaQ1QkJCRFTpkwxvtbpdMLPz09ERkaW2/6pp54SDz/8sMmy0NBQ8eKLL1q0TktISUkRAMSvv/5aYZt169YJV1fX+iuqjsyfP18EBQVVu31j+lxfffVV0bZtW6HX68td31A/UyGEACC2bt1qfK3X64WPj49YsmSJcVlaWprQaDTi66+/rnA7Nf29V8Kdx1qew4cPCwAiPj6+wjY1/V1QQnnHGhERIYYPH16j7TSEz1WI6n22w4cPFw888EClbRrCZ1uX2BNlZQoKCnD06FGEhYUZl6lUKoSFhSEmJqbc98TExJi0B4Dw8PAK21uz9PR0AIC7u3ul7bKystC6dWv4+/tj+PDhOH36dH2UV2sXLlyAn58fAgMDMWbMGFy5cqXCto3lcy0oKMCXX36J559/vtIbcTfUz/ROcXFxSEpKMvnsXF1dERoaWuFnZ87vvbVKT0+HJElwc3OrtF1Nfhesyd69e+Hl5YWOHTti8uTJuHXrVoVtG9PnmpycjO3bt2PChAlVtm2on605GKKszM2bN6HT6eDt7W2y3NvbG0lJSeW+JykpqUbtrZVer8f06dPRr18/3HXXXRW269ixI9auXYvvvvsOX375JfR6Pfr27Ytr167VY7U1FxoaivXr12Pnzp1YtWoV4uLicN999yEzM7Pc9o3lc922bRvS0tIwbty4Cts01M+0PIbPpyafnTm/99YoLy8Ps2fPxujRoyu9OW1NfxesxeDBg/H5558jOjoa77//Pn799VcMGTIEOp2u3PaN5XMFgM8++wzOzs54/PHHK23XUD9bc9koXQCRwZQpU/Dnn39Wef68T58+6NOnj/F137590blzZ3zyySd4++23LV2m2YYMGWJ83r17d4SGhqJ169b45ptvqvW/u4ZqzZo1GDJkCPz8/Cps01A/UypRWFiIp556CkIIrFq1qtK2DfV3YdSoUcbn3bp1Q/fu3dG2bVvs3bsXgwYNUrAyy1u7di3GjBlT5QUfDfWzNRd7oqyMh4cH1Go1kpOTTZYnJyfDx8en3Pf4+PjUqL01mjp1Kn788Ufs2bMHLVu2rNF7bW1t0bNnT1y8eNFC1VmGm5sbOnToUGHdjeFzjY+Px+7du/HCCy/U6H0N9TMFYPx8avLZmfN7b00MASo+Ph5RUVGV9kKVp6rfBWsVGBgIDw+PCutu6J+rwW+//Ybz58/X+PcYaLifbXUxRFkZOzs7BAcHIzo62rhMr9cjOjra5H/qpfXp08ekPQBERUVV2N6aCCEwdepUbN26Fb/88gvatGlT423odDqcOnUKvr6+FqjQcrKysnDp0qUK627In6vBunXr4OXlhYcffrhG72uonykAtGnTBj4+PiafXUZGBg4dOlThZ2fO7721MASoCxcuYPfu3WjevHmNt1HV74K1unbtGm7dulVh3Q35cy1tzZo1CA4ORlBQUI3f21A/22pTemQ7lbVx40ah0WjE+vXrxZkzZ8SkSZOEm5ubSEpKEkII8dxzz4k33njD2H7//v3CxsZGLF26VJw9e1bMnz9f2NrailOnTil1CNU2efJk4erqKvbu3SsSExONj5ycHGObO4934cKFYteuXeLSpUvi6NGjYtSoUUKr1YrTp08rcQjV9tprr4m9e/eKuLg4sX//fhEWFiY8PDxESkqKEKJxfa5CyFchtWrVSsyePbvMuob+mWZmZorjx4+L48ePCwDiww8/FMePHzdekbZ48WLh5uYmvvvuO3Hy5EkxfPhw0aZNG5Gbm2vcxgMPPCCWL19ufF3V771SKjvWgoIC8eijj4qWLVuK2NhYk9/h/Px84zbuPNaqfheUUtmxZmZmilmzZomYmBgRFxcndu/eLe6++27Rvn17kZeXZ9xGQ/lchaj651gIIdLT04WDg4NYtWpVudtoKJ+tpTBEWanly5eLVq1aCTs7OxESEiIOHjxoXDdgwAARERFh0v6bb74RHTp0EHZ2dqJr165i+/bt9VyxeQCU+1i3bp2xzZ3HO336dOP3xtvbWwwdOlQcO3as/ouvoaefflr4+voKOzs70aJFC/H000+LixcvGtc3ps9VCCF27dolAIjz58+XWdfQP9M9e/aU+3NrOCa9Xi/mzp0rvL29hUajEYMGDSrzfWjdurWYP3++ybLKfu+VUtmxxsXFVfg7vGfPHuM27jzWqn4XlFLZsebk5IiHHnpIeHp6CltbW9G6dWsxceLEMmGooXyuQlT9cyyEEJ988omwt7cXaWlp5W6joXy2liIJIYRFu7qIiIiIGiGOiSIiIiIyA0MUERERkRkYooiIiIjMwBBFREREZAaGKCIiIiIzMEQRERERmYEhioiIiMgMDFFERPVIkiRs27ZN6TKIqA4wRBFRkzFu3DhIklTmMXjwYKVLI6IGyEbpAoiI6tPgwYOxbt06k2UajUahaoioIWNPFBE1KRqNBj4+PiaPZs2aAZBPta1atQpDhgyBvb09AgMD8e2335q8/9SpU3jggQdgb2+P5s2bY9KkScjKyjJps3btWnTt2hUajQa+vr6YOnWqyfqbN2/iscceg4ODA9q3b4/vv//esgdNRBbBEEVEVMrcuXMxcuRInDhxAmPGjMGoUaNw9uxZAEB2djbCw8PRrFkzHDlyBJs3b8bu3btNQtKqVaswZcoUTJo0CadOncL333+Pdu3amexj4cKFeOqpp3Dy5EkMHToUY8aMQWpqar0eJxHVAaXvgExEVF8iIiKEWq0Wjo6OJo93331XCCEEAPHSSy+ZvCc0NFRMnjxZCCHEf/7zH9GsWTORlZVlXL99+3ahUqlEUlKSEEIIPz8/8eabb1ZYAwDx1ltvGV9nZWUJAOKnn36qs+MkovrBMVFE1KTcf//9WLVqlckyd3d34/M+ffqYrOvTpw9iY2MBAGfPnkVQUBAcHR2N6/v16we9Xo/z589DkiQkJCRg0KBBldbQvXt343NHR0e4uLggJSXF3EMiIoUwRBFRk+Lo6Fjm9Fpdsbe3r1Y7W1tbk9eSJEGv11uiJCKyII6JIiIq5eDBg2Ved+7cGQDQuXNnnDhxAtnZ2cb1+/fvh0qlQseOHeHs7IyAgABER0fXa81EpAz2RBFRk5Kfn4+kpCSTZTY2NvDw8AAAbN68Gb169cK9996Lr776CocPH8aaNWsAAGPGjMH8+fMRERGBBQsW4MaNG5g2bRqee+45eHt7AwAWLFiAl156CV5eXhgyZAgyMzOxf/9+TJs2rX4PlIgsjiGKiJqUnTt3wtfX12RZx44dce7cOQDylXMbN27Eyy+/DF9fX3z99dfo0qULAMDBwQG7du3Cq6++it69e8PBwQEjR47Ehx9+aNxWREQE8vLy8NFHH2HWrFnw8PDAE088UX8HSET1RhJCCKWLICKyBpIkYevWrRgxYoTSpRBRA8AxUURERERmYIgiIiIiMgPHRBERFePoBiKqCfZEEREREZmBIYqIiIjIDAxRRERERGZgiCIiIiIyA0MUERERkRkYooiIiIjMwBBFREREZAaGKCIiIiIzMEQRERERmeH/AUo7a8l+sy22AAAAAElFTkSuQmCC",
+ "text/plain": [
+ "