-
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathMAX31855.cpp
193 lines (160 loc) · 4.18 KB
/
MAX31855.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
//
// FILE: MAX31855.cpp
// AUTHOR: Rob Tillaart
// VERSION: 0.6.1
// PURPOSE: Arduino library for MAX31855 chip for K type thermocouple
// DATE: 2014-01-01
// URL: https://github.com/RobTillaart/MAX31855_RT
#include "MAX31855.h"
// HW SPI
MAX31855::MAX31855(uint8_t select, __SPI_CLASS__ * mySPI)
{
_select = select;
_miso = 255;
_clock = 255;
_mySPI = mySPI;
_hwSPI = true;
}
// SW SPI
MAX31855::MAX31855(uint8_t select, uint8_t miso, uint8_t clock)
{
_select = select;
_miso = miso;
_clock = clock;
_mySPI = NULL;
_hwSPI = false;
}
void MAX31855::begin()
{
_lastTimeRead = 0;
_offset = 0;
_SeebeckC = K_TC;
_status = STATUS_NOREAD;
_temperature = MAX31855_NO_TEMPERATURE;
_internal = MAX31855_NO_TEMPERATURE;
_rawData = 0;
setSPIspeed(1000000);
pinMode(_select, OUTPUT);
digitalWrite(_select, HIGH);
if (_hwSPI)
{
// _mySPI->end();
// _mySPI->begin();
// delay(1);
}
else
{
pinMode(_clock, OUTPUT);
digitalWrite(_clock, LOW);
pinMode(_miso, INPUT);
}
}
void MAX31855::setSPIspeed(uint32_t speed)
{
_SPIspeed = speed;
_spi_settings = SPISettings(_SPIspeed, MSBFIRST, SPI_MODE0);
};
uint8_t MAX31855::read()
{
// return value of _read()
// BITS DESCRIPTION
// -------------------------------
// 00 - 02 STATUS
// 03 RESERVED
// 04 - 15 INTERNAL
// 16 FAULT-BIT
// 17 RESERVED
// 18 - 30 TEMPERATURE (RAW)
// 31 SIGN
uint32_t value = _read();
if (value == 0xFFFFFFFF) // needs a pull up on MISO pin to work properly!
{
// bit 3 and bit 17 should always be 0 - P10 datasheet
_status = STATUS_NO_COMMUNICATION;
return _status;
}
_lastTimeRead = millis();
// process status bit 0-2
_status = value & 0x0007;
// if (_status != STATUS_OK) // removed in 0.4.0 as internal can be valid.
// {
// return _status;
// }
value >>= 3;
// reserved bit 3, always 0
value >>= 1;
// process internal bit 4-15
_internal = (value & 0x07FF) * 0.0625;
// negative flag set ?
if (value & 0x0800)
{
_internal = -128 + _internal;
}
value >>= 12;
// Fault bit ignored as we have the 3 status bits
// _fault = value & 0x01;
value >>= 1;
// reserved bit 17, always 0
value >>= 1;
// process temperature bit 18-30 + sign bit = 31
_temperature = (value & 0x1FFF) * 0.25;
// negative flag set ?
if (value & 0x2000)
{
_temperature = -2048 + _temperature;
}
return _status;
}
uint32_t MAX31855::_read(void)
{
_rawData = 0;
// DATA TRANSFER
if (_hwSPI)
{
_mySPI->beginTransaction(_spi_settings);
// must be after mySPI->beginTransaction() - see #14 STM32
digitalWrite(_select, LOW);
for (uint8_t i = 0; i < 4; i++)
{
_rawData <<= 8;
_rawData += _mySPI->transfer(0);
}
digitalWrite(_select, HIGH);
_mySPI->endTransaction();
}
else // Software SPI
{
// split _swSPIdelay in equal dLow and dHigh
// dLow should be longer one when _swSPIdelay = odd.
uint16_t dHigh = _swSPIdelay / 2;
uint16_t dLow = _swSPIdelay - dHigh;
digitalWrite(_select, LOW);
for (int8_t i = 31; i >= 0; i--)
{
_rawData <<= 1;
digitalWrite(_clock, LOW);
if (dLow > 0) delayMicroseconds(dLow); // DUE might need 1 us
if ( digitalRead(_miso) ) _rawData++;
digitalWrite(_clock, HIGH);
if (dHigh > 0) delayMicroseconds(dHigh); // DUE
}
digitalWrite(_select, HIGH);
}
return _rawData;
}
float MAX31855::getTemperature()
{
// offset needs to be added after multiplication TCfactor
// not before otherwise offset will be larger / smaller
// default behaviour
if (_SeebeckC == K_TC) return _temperature + _offset;
// EXPERIMENTAL OTHER THERMOCOUPLES
// to be tested
// in practice this works also for K_TC but is way slower..
// 1: reverse calculate the Voltage measured (is this correct?)
float Vout = K_TC * (_temperature - _internal); // PAGE 8 datasheet
// 2: from Voltage to corrected temperature using the Seebeck Coefficient
float _temp = Vout / _SeebeckC + _internal + _offset;
return _temp;
}
// -- END OF FILE --