forked from UBC-Snowbots/Snowflake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrisk-analysis-test.cpp
340 lines (267 loc) · 12.2 KB
/
risk-analysis-test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/*
* Created By: Robyn Castro
* Created On: October 31, 2018
* Description: Tests calculation of risks
*/
#include "./TestUtils.h"
#include "mapping_msgs_urc/RiskAreaArray.h"
#include <RiskAnalysis.h>
#include <gtest/gtest.h>
pcl::PCLPointCloud2 empty_cloud = pcl::PCLPointCloud2();
/**
* Runs tests to verify the inputted point_region has the proper dimensions specified
* by all the other inputs
*
* @param point_region
* @param region_width
* @param region_height
* @param num_vertical_cell_divs
* @param num_horizontal_cell_divs
*/
void testRegionDimensions(std::vector<std::vector<RegionOfPoints>> point_region,
float region_width,
float region_height,
int num_vertical_cell_divs,
int num_horizontal_cell_divs);
/**
*
* @param risk_analysis
* @param region_width
* @param region_height
* @param num_vertical_cell_divs
* @param num_horizontal_cell_divs
*/
void testRegionLocations(RiskAnalysis risk_analysis,
float region_width,
float region_height,
int num_vertical_cell_divs,
int num_horizontal_cell_divs);
/**
* Runs tests to determine equality of points
*/
void EXPECT_POINT_EQ(sb_geom_msgs::Point2D expected_val, sb_geom_msgs::Point2D actual_val) {
float abs_error = 0.0001;
EXPECT_NEAR(expected_val.x, actual_val.x, abs_error);
EXPECT_NEAR(expected_val.y, actual_val.y, abs_error);
}
/**
* Creates a point with specified values
*/
sb_geom_msgs::Point2D createPoint(float x, float y) {
sb_geom_msgs::Point2D point;
point.x = x;
point.y = y;
return point;
}
TEST(RegionInitialisation, DivisionsEqualToDimensions) {
float region_width = 10;
float region_height = 10;
int num_vertical_cell_divs = 10;
int num_horizontal_cell_divs = 10;
int min_points_in_region = 1;
float risk_multiplier = 1;
RiskAnalysis risk_analysis = RiskAnalysis(region_width,
region_height,
num_vertical_cell_divs,
num_horizontal_cell_divs,
min_points_in_region,
risk_multiplier);
std::vector<std::vector<RegionOfPoints>> point_region;
point_region = risk_analysis.initialisePointRegions();
EXPECT_EQ(num_vertical_cell_divs, point_region.size());
EXPECT_EQ(num_horizontal_cell_divs, point_region[0].size());
testRegionDimensions(point_region,
region_width,
region_height,
num_vertical_cell_divs,
num_horizontal_cell_divs);
testRegionLocations(risk_analysis, region_width, region_height, num_vertical_cell_divs, num_horizontal_cell_divs);
}
TEST(RegionAnalysis, DivisionsEqualToDimensions) {
float region_width = 10;
float region_height = 10;
int num_vertical_cell_divs = 10;
int num_horizontal_cell_divs = 10;
int min_points_in_region = 1;
float risk_multiplier = 1;
RiskAnalysis risk_analysis = RiskAnalysis(region_width,
region_height,
num_vertical_cell_divs,
num_horizontal_cell_divs,
min_points_in_region,
risk_multiplier);
mapping_msgs_urc::RiskAreaArray pcl_risk =
risk_analysis.assessPointCloudRisk(empty_cloud);
}
TEST(RegionInitialisation, NonIntegerCellDimensions) {
float region_width = 10;
float region_height = 10;
int num_vertical_cell_divs = 100;
int num_horizontal_cell_divs = 100;
int min_points_in_region = 1;
float risk_multiplier = 1;
RiskAnalysis risk_analysis = RiskAnalysis(region_width,
region_height,
num_vertical_cell_divs,
num_horizontal_cell_divs,
min_points_in_region,
risk_multiplier);
std::vector<std::vector<RegionOfPoints>> point_region;
point_region = risk_analysis.initialisePointRegions();
EXPECT_EQ(num_vertical_cell_divs, point_region.size());
EXPECT_EQ(num_horizontal_cell_divs, point_region[0].size());
testRegionDimensions(point_region,
region_width,
region_height,
num_vertical_cell_divs,
num_horizontal_cell_divs);
testRegionLocations(risk_analysis, region_width, region_height, num_vertical_cell_divs, num_horizontal_cell_divs);
}
TEST(RegionAnalysis, NonIntegerCellDimensions) {
float region_width = 10;
float region_height = 10;
int num_vertical_cell_divs = 100;
int num_horizontal_cell_divs = 100;
int min_points_in_region = 1;
float risk_multiplier = 1;
RiskAnalysis risk_analysis = RiskAnalysis(region_width,
region_height,
num_vertical_cell_divs,
num_horizontal_cell_divs,
min_points_in_region,
risk_multiplier);
mapping_msgs_urc::RiskAreaArray pcl_risk =
risk_analysis.assessPointCloudRisk(empty_cloud);
}
TEST(RegionInitialisation, OneDiv) {
float region_width = 2;
float region_height = 2;
int num_vertical_cell_divs = 2;
int num_horizontal_cell_divs = 1;
int min_points_in_region = -1;
float risk_multiplier = 1;
RiskAnalysis risk_analysis = RiskAnalysis(region_width,
region_height,
num_vertical_cell_divs,
num_horizontal_cell_divs,
min_points_in_region,
risk_multiplier);
std::vector<std::vector<RegionOfPoints>> point_region;
point_region = risk_analysis.initialisePointRegions();
EXPECT_EQ(num_vertical_cell_divs, point_region.size());
EXPECT_EQ(num_horizontal_cell_divs, point_region[0].size());
testRegionDimensions(point_region,
region_width,
region_height,
num_vertical_cell_divs,
num_horizontal_cell_divs);
testRegionLocations(risk_analysis, region_width, region_height, num_vertical_cell_divs, num_horizontal_cell_divs);
}
TEST(RegionAnalysis, OneDiv) {
float region_width = 2;
float region_height = 2;
int num_vertical_cell_divs = 2;
int num_horizontal_cell_divs = 1;
int min_points_in_region = -1;
float risk_multiplier = 1;
RiskAnalysis risk_analysis = RiskAnalysis(region_width,
region_height,
num_vertical_cell_divs,
num_horizontal_cell_divs,
min_points_in_region,
risk_multiplier);
mapping_msgs_urc::RiskAreaArray pcl_risk =
risk_analysis.assessPointCloudRisk(empty_cloud);
}
void testRegionDimensions(std::vector<std::vector<RegionOfPoints>> point_region,
float region_width,
float region_height,
int num_vertical_cell_divs,
int num_horizontal_cell_divs) {
float cell_width = region_width / num_horizontal_cell_divs;
float cell_height = region_height / num_vertical_cell_divs;
float abs_error = 0.001;
for (int i = 0; i < point_region.size(); i++) {
for (int j = 0; j < point_region[0].size(); j++) {
sb_geom_msgs::Polygon2D cur_cell = point_region[i][j].region_area;
// Top Left Point vs Bottom Left Point
EXPECT_NEAR(cell_height, cur_cell.points[0].x - cur_cell.points[3].x, abs_error);
// Top Right Point vs Bottom Right Point
EXPECT_NEAR(cell_height, cur_cell.points[1].x - cur_cell.points[2].x, abs_error);
// Top Left Point vs Top Right Point
EXPECT_NEAR(cell_width, cur_cell.points[0].y - cur_cell.points[1].y, abs_error);
// Bottom Left Point vs Bottom Right Point
EXPECT_NEAR(cell_width, cur_cell.points[3].y - cur_cell.points[2].y, abs_error);
}
}
}
void testRegionLocations(RiskAnalysis risk_analysis,
float region_width,
float region_height,
int num_vertical_cell_divs,
int num_horizontal_cell_divs) {
float cell_width = region_width / num_horizontal_cell_divs;
float cell_height = region_height / num_vertical_cell_divs;
float cur_cell_top = region_height;
for (int i = 0; i < num_vertical_cell_divs; i++) {
float cur_cell_left = region_width / 2;
for (int j = 0; j < num_horizontal_cell_divs; j++) {
sb_geom_msgs::Polygon2D cur_region =
risk_analysis.getRegionAreaFromIndices(i, j);
sb_geom_msgs::Point2D top_left_point = createPoint(cur_cell_top, cur_cell_left);
sb_geom_msgs::Point2D top_right_point = createPoint(cur_cell_top, cur_cell_left - cell_width);
sb_geom_msgs::Point2D bottom_right_point = createPoint(cur_cell_top - cell_height, cur_cell_left - cell_width);
sb_geom_msgs::Point2D bottom_left_point = createPoint(cur_cell_top - cell_height, cur_cell_left);
EXPECT_POINT_EQ(top_left_point, cur_region.points[0]);
EXPECT_POINT_EQ(top_right_point, cur_region.points[1]);
EXPECT_POINT_EQ(bottom_right_point, cur_region.points[2]);
EXPECT_POINT_EQ(bottom_left_point, cur_region.points[3]);
cur_cell_left -= cell_width;
}
cur_cell_top -= cell_height;
}
}
TEST(StandardDeviation, OneDataPoint) {
RiskAnalysis risk_analysis = RiskAnalysis();
std::vector<float> data_set = {1};
EXPECT_FLOAT_EQ(0.0, risk_analysis.calculateStandardDeviation(data_set));
}
TEST(StandardDeviation, TwoEqualDataPoints) {
RiskAnalysis risk_analysis = RiskAnalysis();
std::vector<float> data_set = {1, 1};
EXPECT_FLOAT_EQ(0.0, risk_analysis.calculateStandardDeviation(data_set));
}
TEST(StandardDeviation, TwoUnequalEqualDataPoints) {
RiskAnalysis risk_analysis = RiskAnalysis();
std::vector<float> data_set = {1, 2};
EXPECT_FLOAT_EQ(0.5, risk_analysis.calculateStandardDeviation(data_set));
}
TEST(StandardDeviation, NonIntegerDataPoints) {
RiskAnalysis risk_analysis = RiskAnalysis();
std::vector<float> data_set = {5.4, 3.4, 8, 100, 20, 5.5};
EXPECT_NEAR(
34.54487018, risk_analysis.calculateStandardDeviation(data_set), 0.01);
}
TEST(StandardDeviation, NegativeNonIntegerDataPoints) {
RiskAnalysis risk_analysis = RiskAnalysis();
std::vector<float> data_set = {-5.4, 3.4, -8, 100, -20, 5.5};
EXPECT_NEAR(
39.96858836, risk_analysis.calculateStandardDeviation(data_set), 0.01);
}
TEST(StandardDeviation, RandomDataPoints) {
RiskAnalysis risk_analysis = RiskAnalysis();
std::vector<float> data_set = {1, 2, -7, 5.4, 3.4, 8, 100, 20, -5};
EXPECT_NEAR(
31.21424176, risk_analysis.calculateStandardDeviation(data_set), 0.01);
}
TEST(StandardDeviation, RandomDataPointsLargeNumbers) {
RiskAnalysis risk_analysis = RiskAnalysis();
std::vector<float> data_set = {
1, 2, -7, 5.4, 3.4, 8, 100, 20, -5000, 254000, 5, -200080};
EXPECT_NEAR(
93261.48782, risk_analysis.calculateStandardDeviation(data_set), 0.01);
}
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}