-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathStockAnalyze.py
274 lines (211 loc) · 7.27 KB
/
StockAnalyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
'''
@author:rocky
@email:[email protected]
@feature: 收盘事后分析
'''
from configure.settings import DBSelector
import pandas as pd
from scipy import stats
import tushare as ts
import datetime
import os
# import matplotlib.pyplot as plt
import numpy as np
pd.set_option('display.max_rows', None)
def volume_calculation(code, start, end):
'''
计算某个股票的某个时间段的累计成交量
:param start: 开始日期
:param end: 结束日期
:return: 成交量,占每天比例
'''
df = ts.get_today_ticks(code)
# 转换str为时间格式,便于下面用来比较时间的大小
df['time'] = df['time'].map(lambda x: datetime.datetime.strptime(str(x), '%H:%M:%S'))
total = df['volume'].sum()
start = datetime.datetime.strptime(start, '%H:%M:%S')
end = datetime.datetime.strptime(end, '%H:%M:%S')
new_df = df[(df['time'] >= start) & (df['time'] < end)]
volume = new_df['volume'].sum()
rate = round(volume * 1.00 / total * 100, 2)
return volume, rate
def today_statistics(today):
'''
:help: 今天涨跌幅的统计分析: 中位数,均值等数据
:param today: 日期 2019-01-01
:return:None
'''
engine = DBSelector().get_engine('db_daily')
df = pd.read_sql(today, engine, index_col='index')
# 去除停牌的 成交量=0
df = df[df['volume'] != 0]
median = round(df['changepercent'].median(), 2)
mean = round(df['changepercent'].mean(), 2)
std = round(df['changepercent'].std(), 2)
p_25 = round(stats.scoreatpercentile(df['changepercent'], 25), 2)
p_50 = round(stats.scoreatpercentile(df['changepercent'], 50), 2)
p_75 = round(stats.scoreatpercentile(df['changepercent'], 75), 2)
print('中位数: {}'.format(median))
print('平均数: {}'.format(mean))
print('方差: {}'.format(std))
print('25%: {}'.format(p_25))
print('50%: {}'.format(p_50))
print('75%: {}'.format(p_75))
def zt_location(date):
'''
:help: 分析涨停的区域分布
:param date:日期格式 20180404
:return:
'''
engine_zdt = DBSelector().get_engine('db_zdt')
engine_basic = DBSelector().get_engine('db_stock')
df = pd.read_sql(date + 'zdt', engine_zdt, index_col='index')
df_basic = pd.read_sql('tb_basic_info', engine_basic, index_col='index')
result = {}
for code in df['代码'].values:
try:
area = df_basic[df_basic['code'] == code]['area'].values[0]
result.setdefault(area, 0)
result[area] += 1
except Exception as e:
print(e)
new_result = sorted(result.items(), key=lambda x: x[1], reverse=True)
for k, v in new_result:
print(k, v)
def show_percentage(price):
'''
:help: 根据收盘价计算每个百分比的价格
:param open_price: 开盘价
:return:
'''
for i in range(1, 11):
print('{}\t+{}% -> {}'.format(price, i, round(price * (1 + 0.01 * i), 2)))
for i in range(1, 11):
print('{}\t-{}% -> {}'.format(price, i, round(price * (1 - 0.01 * i), 2)))
def stock_profit(code, start, end):
'''
:help: 计算某个时间段的收益率
:param code: 股票代码
:param start: 开始时间
:param end: 结束时间
:return: 收益率
'''
k_data = ts.get_k_data(start=start, end=end, code=code)
if len(k_data)==0:
return np.nan
start_price = k_data['close'].values[0]
print("Start price: ", start_price)
end_price = k_data['close'].values[-1]
print("End price: ", end_price)
earn_profit = (end_price - start_price) / start_price * 100
print("Profit: ", round(earn_profit, 2))
return round(earn_profit, 2)
def exclude_kcb(df):
'''
:help: 去除科创板
:param df:
:return:
'''
non_kcb = df[~df['code'].map(lambda x: True if x.startswith('688') else False)]
return non_kcb
def plot_percent_distribution(date):
'''
:help:图形显示某一天的涨跌幅分布
:param date:
:return:
'''
import matplotlib.pyplot as plt
total = []
engine = DBSelector().get_engine('db_daily')
df = pd.read_sql(date, con=engine)
df = exclude_kcb(df)
count = len(df[(df['changepercent'] >= -11) & (df['changepercent'] <= -9.5)])
total.append(count)
for i in range(-9, 9, 1):
count = len(df[(df['changepercent'] >= i * 1.00) & (df['changepercent'] < ((i + 1)) * 1.00)])
total.append(count)
count = len(df[(df['changepercent'] >= 9)])
total.append(count)
# print(total)
df_figure = pd.Series(total)
plt.figure(figsize=(16, 10))
X = range(-10, 10)
plt.bar(X, height=total, color='y')
for x, y in zip(X, total):
plt.text(x, y + 0.05, y, ha='center', va='bottom')
plt.grid()
plt.xticks(range(-10, 11))
plt.show()
def year_price_change(year,ignore_new_stock=False):
'''
:year: 年份
:ignore_new_stock: 排除当年上市的新股
计算某年个股的涨幅排名
:return: None 生成excel
'''
year = int(year)
basic = ts.get_stock_basics()
pro = []
name=''
# basic['timeToMarket']=pd.to_datetime(basic['timeToMarket'],format='%Y%m%d')
# 去除当年的新股
if ignore_new_stock:
basic=basic[basic['timeToMarket']< int('{}0101'.format(year))]
name = '_ignore_new_stock'
filename='{}_all_price_change{}.xls'.format(year,name)
for code in basic.index.values:
p = stock_profit(code, '{}-01-01'.format(year), '{}-01-01'.format(year+1))
pro.append(p)
basic['p_change_year'] = pro
basic=basic.sort_values(by='p_change_year', ascending=False)
basic.to_excel(filename, encoding='gbk')
def stock_analysis(filename):
'''
# 分析年度的数据
:return:
'''
df=pd.read_excel(filename,encoding='gbk')
print('mean:\n',df['p_change_year'].mean())
print('max:\n',df['p_change_year'].max())
print('min:\n',df['p_change_year'].min())
print('middle\n',df['p_change_year'].median())
# plt.figure()
# df['p_change_year'].plot.hist()
# plt.show()
def cb_stock_year():
'''
上一年可转债正股的涨跌幅排名
:return:
'''
engine = get_engine('db_stock')
df_cb = pd.read_sql('tb_bond_jisilu', engine)
filename='2019_all_price_change_ignore_new_stock.xls'
df_all=pd.read_excel(filename,encoding='gbk')
zg_codes = list(df_cb['正股代码'].values)
df = df_all[df_all['code'].isin(zg_codes)]
df.to_excel('2019_cb_zg.xls',encoding='gbk')
def main():
## 某个股票某个时间段的成交量 ####
# code = '000069'
# v, ratio = volume_calculation(code,'09:30:00', '10:00:00')
# print('\n')
# print(v, ratio)
## 涨跌幅分布 #####
# TODAY=datetime.datetime.now().strftime("%Y-%m-%d")
# today_tendency(TODAY)
## 分析涨停的区域分布 ####
# TODAY = datetime.datetime.now().strftime("%Y%m%d")
# zt_location(TODAY)
## 显示百分比价格
# show_percentage(121)
## 计算某个个股某段时间的收益率
# stock_profit('300333','2019-01-01','2020-02-03')
## 显示价格分布
# date = '2020-02-07'
# plot_percent_distribution(date)
# 某年个股涨幅
# year_price_change(2019,True)
# stock_analysis('2019_all_price_change_ignore_new_stock.xls')
cb_stock_year()
if __name__ == '__main__':
main()