-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathspacex_dash_app.py
125 lines (114 loc) · 5.35 KB
/
spacex_dash_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# Import required libraries
import pandas as pd
import dash
import dash_html_components as html
import dash_core_components as dcc
from dash.dependencies import Input, Output
import plotly.express as px
# Read the airline data into pandas dataframe
spacex_df = pd.read_csv("spacex_launch_dash.csv")
max_payload = spacex_df['Payload Mass (kg)'].max()
min_payload = spacex_df['Payload Mass (kg)'].min()
unique_launch_sites = spacex_df['Launch Site'].unique().tolist()
launch_sites = []
launch_sites.append({'label': 'All Sites', 'value': 'All Sites'})
for launch_site in unique_launch_sites:
launch_sites.append({'label': launch_site, 'value': launch_site})
marks_dict = {}
for i in range(0,11000,1000):
marks_dict[i] = {'label': str(i)+' Kg'}
# Create a dash application
app = dash.Dash(__name__)
# Create an app layout
app.layout = html.Div(children=[html.H1('SpaceX Launch Records Dashboard',
style={'textAlign': 'center', 'color': '#503D36',
'font-size': 40}),
# TASK 1: Add a dropdown list to enable Launch Site selection
# The default select value is for ALL sites
# dcc.Dropdown(id='site-dropdown',...)
dcc.Dropdown(
id = 'site-dropdown',
options = launch_sites,
placeholder = 'Select a Launch Site',
searchable = True ,
value = 'All Sites'
),
html.Br(),
# TASK 2: Add a pie chart to show the total successful launches count for all sites
# If a specific launch site was selected, show the Success vs. Failed counts for the site
html.Div(dcc.Graph(id='success-pie-chart')),
html.Br(),
html.P("Payload range (Kg):"),
# TASK 3: Add a slider to select payload range
#dcc.RangeSlider(id='payload-slider',...)
html.Div([
dcc.RangeSlider(
id = 'payload_slider',
min = 0,
max = 10000,
step = 1000,
marks = marks_dict,
value = [min_payload, max_payload]
),
], style={'padding': '40px 30px'}),
# TASK 4: Add a scatter chart to show the correlation between payload and launch success
html.Div(dcc.Graph(id='success-payload-scatter-chart')),
])
# TASK 2:
# Add a callback function for `site-dropdown` as input, `success-pie-chart` as output
@app.callback(
Output(component_id = 'success-pie-chart', component_property = 'figure'),
[Input(component_id = 'site-dropdown', component_property = 'value')]
)
def piegraph_update(site_dropdown):
if site_dropdown == 'All Sites' or site_dropdown == 'None':
data = spacex_df[spacex_df['class'] == 1]
fig = px.pie(
data,
names = 'Launch Site',
title = 'Total Success Launches by Site'
)
else:
data = spacex_df.loc[spacex_df['Launch Site'] == site_dropdown]
fig = px.pie(
data,
names = 'class',
title = 'Total Success Launches for Site ' + site_dropdown,
)
return fig
# TASK 4:
# Add a callback function for `site-dropdown` and `payload-slider` as inputs, `success-payload-scatter-chart` as output
@app.callback(
Output(component_id = 'success-payload-scatter-chart', component_property = 'figure'),
[Input(component_id = 'site-dropdown', component_property = 'value'),
Input(component_id = "payload_slider", component_property = "value")]
)
def scattergraph_update(site_dropdown, payload_slider):
low, high = payload_slider
if (site_dropdown == 'All Sites' or site_dropdown == 'None'):
print(payload_slider)
low, high = payload_slider
data = spacex_df[spacex_df['Payload Mass (kg)'].between(low, high)]
fig = px.scatter(
data,
x = "Payload Mass (kg)",
y = "class",
title = 'Correlation between Payload and Success for all Sites',
color = "Booster Version Category"
)
else:
print(payload_slider)
low, high = payload_slider
data = spacex_df[spacex_df['Payload Mass (kg)'].between(low, high)]
data_filtered = data[data['Launch Site'] == site_dropdown]
fig = px.scatter(
data_filtered,
x = "Payload Mass (kg)",
y = "class",
title = 'Correlation between Payload and Success for site '+ site_dropdown,
color = "Booster Version Category"
)
return fig
# Run the app
if __name__ == '__main__':
app.run_server()