-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjackgo.py
41 lines (26 loc) · 953 Bytes
/
jackgo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# -*- coding: utf-8 -*-
"""JackGO
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1ewiLRwUQ-7aNVNUgvGKmrqQphec4GOmH
"""
import tensorflow.keras
from PIL import Image, ImageOps
import numpy as np
np.set_printoptions(suppress=True)
trained_model = tensorflow.keras.models.load_model('JACKgo_model.h5')
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
test_image = Image.open('mango.jpg')
size = (224, 224)
test_image = ImageOps.fit(test_image, size, Image.ANTIALIAS)
test_image_array = np.asarray(test_image)
test_image.show()
normalized_test_image_array = (test_image_array.astype(np.float32) / 127.0) - 1
data[0] = normalized_test_image_array
result = trained_model.predict(data)
if result[0][0] > 0.8:
print("The fruit is identified as Jackfruit")
elif result[0][1] > 0.8:
print("The fruit is identified as Mango")
else:
print("Can't identify the fruit")