-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtest.py
106 lines (88 loc) · 3.58 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import yaml
import time
import torch
import argparse
import importlib
import torch.distributed
from torch.backends import cudnn
from shutil import copy2
from pprint import pprint
from tensorboardX import SummaryWriter
# from torch.utils.tensorboard import SummaryWriter
import re
def get_args():
# command line args
parser = argparse.ArgumentParser(description='Test')
parser.add_argument('config', type=str,
help='The configuration file.')
# distributed training
parser.add_argument('--world_size', default=1, type=int,
help='Number of distributed nodes.')
parser.add_argument('--dist_url', default='tcp://127.0.0.1:9991', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist_backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--distributed', action='store_true',
help='Use multi-processing distributed training to '
'launch N processes per node, which has N GPUs. '
'This is the fastest way to use PyTorch for '
'either single node or multi node data parallel '
'training')
parser.add_argument('--rank', default=0, type=int,
help='node rank for distributed training')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use. None means using all '
'available GPUs.')
# Resume:
parser.add_argument('--pretrained', default=None, type=str,
help="Pretrained cehckpoint")
args = parser.parse_args()
def dict2namespace(config):
namespace = argparse.Namespace()
for key, value in config.items():
if isinstance(value, dict):
new_value = dict2namespace(value)
else:
new_value = value
setattr(namespace, key, new_value)
return namespace
# parse config file
with open(args.config, 'r') as f:
config = yaml.safe_load(f)
config = dict2namespace(config)
# # Create log_name
cfg_file_name = os.path.splitext(os.path.basename(args.config))[0]
run_time = time.strftime('%Y-%b-%d-%H-%M-%S')
# Currently save dir and log_dir are the same
config.log_name = "val_logs/%s_val_%s" % (cfg_file_name, run_time)
config.save_dir = "val_logs/%s_val_%s" % (cfg_file_name, run_time)
config.log_dir = "val_logs/%s_val_%s" % (cfg_file_name, run_time)
os.makedirs(config.log_dir + '/config')
copy2(args.config, config.log_dir + '/config')
return args, config
def main_worker(gpu, ngpus_per_node, cfg, args):
# basic setup
cudnn.benchmark = True
writer = SummaryWriter(log_dir=cfg.log_name)
data_lib = importlib.import_module(cfg.data.type)
loaders = data_lib.get_data_loaders(cfg.data)
test_loader = loaders['test_loader']
trainer_lib = importlib.import_module(cfg.trainer.type)
trainer = trainer_lib.Trainer(cfg, args)
trainer.resume(args.pretrained, test=True)
val_info = trainer.validate(test_loader, epoch=-1)
trainer.log_val(val_info, writer=writer, step=-1)
print("Test done:")
writer.close()
def main():
# command line args
args, cfg = get_args()
print("Arguments:")
print(args)
print("Configuration:")
print(cfg)
ngpus_per_node = torch.cuda.device_count()
main_worker(args.gpu, ngpus_per_node, cfg, args)
if __name__ == '__main__':
main()