-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathinference.py
118 lines (77 loc) · 3.36 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 28 15:43:18 2020
@author: admin
"""
import torch
import torch.nn as nn
from PW_NBDF_Net import PW_NBDF
import numpy as np
import scipy.signal as signal
import scipy.io.wavfile
import os,fnmatch
from scipy import io
print(torch.cuda.is_available())
print(torch.__version__)
print(torch.version.cuda)
print(torch.backends.cudnn.version())
print(torch.cuda.get_device_name(0))
os.environ["CUDA_VISIBLE_DEVICES"] = '7'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Device is :', device)
torch.cuda.empty_cache()
def wav_generator(noise):
print("Processing {}, {}".format(array,noise))
wavPath = testPath + noise +'/'
wavFiles = fnmatch.filter(os.listdir(wavPath),'*_ms.wav')
outDir = outPath + noise +'/'
if not os.path.isdir(outDir):
os.makedirs(outDir)
for wavIndx in range(len(wavFiles)):
rate,s = scipy.io.wavfile.read(wavPath+wavFiles[wavIndx])
if len(s.shape) == 2:
if s.shape[0] > s.shape[1]:
s = np.transpose(s)
f, t, S = signal.stft(s,window=win,nperseg=ft_len,noverlap=ft_overlap)
Sref = S[0,:,:]
mu = np.abs(Sref).mean(axis=1)
fra_num = S.shape[2]
X = np.empty((fre_num,fra_num,n_channels*2))
for ch in range(n_channels):
X[:,:,2*ch] = np.real(S[ch,:,:])
X[:,:,2*ch+1] = np.imag(S[ch,:,:])
X = torch.from_numpy(X/mu.reshape(fre_num,1,1)).to(device)
# prediction: directly input the whole utterance to the network
load_network.eval()
y = load_network(X.float())
y = y.cpu().detach().numpy()
y = y.reshape(fre_num,fra_num)
Y = Sref*y
# istft
t,enhanced = signal.istft(Y,window=win,nperseg=ft_len,noverlap=ft_overlap,input_onesided=True)
enhanced = np.int16(amp*enhanced/np.max(np.abs(enhanced)))
outname = outDir + wavFiles[wavIndx][:-7]+'.wav'
scipy.io.wavfile.write(outname,rate,enhanced)
if __name__ == "__main__":
modelpath = 'PW_NBDF_adjusted_models/'
modelindex = 10
test_array = ['2ch-line-D8cm','2ch-cir-D14cm','4ch-cir-D20cm','4ch-line-D16cm','6ch-cir-D20cm','6ch-line-D24cm']
noise_type = ['babble','white','wind']
for dataPath in ['../SIMU_array_specfic_baseline_data_new/']:
for array in test_array:
n_channels = int(array[0])
testPath = dataPath + 'test_mixed_wav/' + array + '/'
outPath = dataPath + 'predictions/prediction_wav_{}/'.format(modelpath[:-8]) + array + '/'
modelname = modelpath + 'network_epoch{}.pth'.format(modelindex)
print("Processing {} {} test ...".format(dataPath[3:-1] , array))
# STFT parameters, should be identical to the ones used for train
ft_len = 512
ft_overlap = ft_len//2
fre_num = ft_len//2+1
win = 'hann'
amp = np.iinfo(np.int16).max
load_network = PW_NBDF()
load_network.load_state_dict(torch.load(modelname))
load_network = load_network.to(device)
for noise in noise_type:
wav_generator(noise)