-
Notifications
You must be signed in to change notification settings - Fork 5
/
train_visda.py
567 lines (471 loc) · 24.8 KB
/
train_visda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
import random
import os
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import numpy as np
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
from torch.nn import DataParallel
from torchvision import transforms
from model_compat import Classifier, Discriminator_fea, generator_fea_deconv, contrastor, LinearAverage
from dataset import visDataset_target
from test import val_pclass
from utils import log, elr_loss, entropy_loss, ls_distance, infoNCE, infoNCE_g
import time
from scipy.spatial.distance import cdist
from tensorboardX import SummaryWriter
from auto_augment import AutoAugment
######################
# params #
######################
class Trainer(object):
def __init__(self, args):
self.args = args
self.loss = nn.CrossEntropyLoss().cuda()
self.loss_entropy = entropy_loss().cuda()
self.infonce = infoNCE(class_num=12)
self.gen_c = infoNCE_g(class_num=12)
self.writer = SummaryWriter()
self.alpha = 1
self.logger = log()
self.lr = args.lr
self.same_ind = np.array([])
self.confi_pre = np.array([])
def cosine_similarity(self, feature, pairs):
feature = F.normalize(feature) # F.normalize只能处理两维的数据,L2归一化
pairs = F.normalize(pairs)
similarity = feature.mm(pairs.t()) # 计算余弦相似度
return similarity # 返回余弦相似度
def exp_lr_scheduler(self, optimizer, step, lr_decay_step=2000,
step_decay_weight=0.95):
init_lr = self.lr
# Decay learning rate by a factor of step_decay_weight every lr_decay_step
current_lr = init_lr * (step_decay_weight ** (step / lr_decay_step))
if step % lr_decay_step == 0:
print('learning rate is set to %f' % current_lr)
for param_group in optimizer.param_groups:
param_group['lr'] = current_lr
return optimizer
def obtain_label(self, loader, my_net):
my_net.eval()
start_test = True
with torch.no_grad():
iter_test = iter(loader)
for _ in range(len(loader)):
data = iter_test.next()
inputs = data[0]
labels = data[1]
t_indx = data[2]
inputs = inputs.cuda()
outputs, feas = my_net(inputs)
if start_test:
all_fea = feas.float().cpu()
all_output = outputs.float().cpu()
all_label = labels.float()
all_indx = t_indx.float()
start_test = False
else:
all_fea = torch.cat((all_fea, feas.float().cpu()), 0)
all_output = torch.cat((all_output, outputs.float().cpu()), 0)
all_label = torch.cat((all_label, labels.float()), 0)
all_indx = torch.cat((all_indx, t_indx.float()), 0)
all_output = nn.Softmax(dim=1)(all_output)
max_prob, predict = torch.max(all_output, 1)
accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
# 找出模型输出的高概率样本
model_ind = torch.squeeze((max_prob > self.alpha).nonzero())
model_ind = model_ind.numpy()
model_pre = predict.numpy().astype('int')
all_fea = torch.cat((all_fea, torch.ones(all_fea.size(0), 1)), 1)
all_fea = (all_fea.t() / torch.norm(all_fea, p=2, dim=1)).t()
all_fea = all_fea.float().cpu().numpy()
K = all_output.size(1)
aff = all_output.float().cpu().numpy()
initc = aff.transpose().dot(all_fea)
initc = initc / (1e-8 + aff.sum(axis=0)[:, None])
dd = cdist(all_fea, initc, 'cosine')
pred_label = dd.argmin(axis=1)
acc = np.sum(pred_label == all_label.float().numpy()) / len(all_fea)
for round in range(1):
aff = np.eye(K)[pred_label]
initc = aff.transpose().dot(all_fea)
initc = initc / (1e-8 + aff.sum(axis=0)[:, None]) # (nclass, f_dim)
dd = cdist(all_fea, initc, 'cosine')
pred_label = dd.argmin(axis=1)
acc = np.sum(pred_label == all_label.float().numpy()) / len(all_fea)
# obtain the indexes of same prediction between model prediction and clustering
same_ind = np.where(pred_label.astype('int') == model_pre)[0]
union = np.intersect1d(model_ind, same_ind)
return union, pred_label.astype('int')[union]
def obtain_residue_label(self, loader, my_net, confi_pre, confi_ind):
my_net.eval()
start_test = True
with torch.no_grad():
iter_test = iter(loader)
for _ in range(len(loader)):
data = iter_test.next()
inputs = data[0]
labels = data[1]
t_indx = data[2]
inputs = inputs.cuda()
outputs, feas = my_net(inputs)
if start_test:
all_fea = feas.float().cpu()
all_output = outputs.float().cpu()
all_label = labels.float()
all_indx = t_indx.float()
start_test = False
else:
all_fea = torch.cat((all_fea, feas.float().cpu()), 0)
all_output = torch.cat((all_output, outputs.float().cpu()), 0)
all_label = torch.cat((all_label, labels.float()), 0)
all_indx = torch.cat((all_indx, t_indx.float()), 0)
all_output = nn.Softmax(dim=1)(all_output)
max_prob, predict = torch.max(all_output, 1)
accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
all_fea = torch.cat((all_fea, torch.ones(all_fea.size(0), 1)), 1)
all_fea = (all_fea.t() / torch.norm(all_fea, p=2, dim=1)).t()
all_fea = all_fea.float().cpu().numpy()
K = all_output.size(1)
aff = all_output.float().cpu().numpy()
initc_output = aff.transpose().dot(all_fea)
initc_output = initc_output / (1e-8 + aff.sum(axis=0)[:, None])
# initialize the cluster centroids
class_tup = []
for i in confi_pre:
if i not in class_tup:
class_tup.append(i)
aff_confi = np.eye(K)[confi_pre]
initc = aff_confi.transpose().dot(all_fea[confi_ind])
for i in range(self.args.num_class):
if i not in class_tup:
initc[i] = initc_output[i]
dd = cdist(all_fea, initc, 'cosine')
pred_label = dd.argmin(axis=1)
acc = np.sum(pred_label == all_label.float().numpy()) / len(all_fea)
for round in range(1):
aff = np.eye(K)[pred_label]
initc = aff.transpose().dot(all_fea)
initc = initc / (1e-8 + aff.sum(axis=0)[:, None]) # (nclass, f_dim)
dd = cdist(all_fea, initc, 'cosine')
pred_label = dd.argmin(axis=1)
acc = np.sum(pred_label == all_label.float().numpy()) / len(all_fea)
self.logger.info('Accuracy = {:.2f}% -> {:.2f}%'.format(accuracy * 100, acc * 100))
# calculate the confidence weights
max_prob, _ = torch.max(F.softmax(torch.from_numpy(1 - dd) / 0.07, dim=1), dim=1)
pred_label = pred_label.astype('int')
pred_label[confi_ind] = confi_pre
acc = np.sum(pred_label == all_label.float().numpy()) / len(all_fea)
return pred_label, acc, all_indx.numpy(), max_prob.detach()
def adaptation_step(self, tgt_img, tgt_pre_label, sor_img, labels, t_indx, model, discriminator, fea_contrastor, optimizer, epoch, sam_confidence):
model.train()
discriminator.train()
fea_contrastor.train()
optimizer.zero_grad()
outputs, feas = model(tgt_img)
reflect_fea = fea_contrastor(feas)
all_fea = feas.float().cpu()
all_ref_fea = reflect_fea.float().cpu()
all_sam_indx, all_in, _ = np.intersect1d(t_indx, t_indx, return_indices=True)
# calculate neighborhood clustering loss
feat_t = F.normalize(all_fea.cuda())
feat_mat = self.lemniscate(feat_t, t_indx)
feat_mat[:, t_indx] = -1 / 0.05
### Calculate mini-batch x mini-batch similarity
feat_mat2 = torch.matmul(feat_t,
feat_t.t()) / 0.05
mask = torch.eye(feat_mat2.size(0),
feat_mat2.size(0)).type(torch.bool).cuda()
feat_mat2.masked_fill_(mask.byte(), -1 / 0.05)
loss_nc = 0.05 * self.loss_entropy(torch.cat([feat_mat,
feat_mat2], 1).cuda()).cuda()
adv_loss = Variable(torch.tensor(0.).cuda())
source_dann = Variable(torch.tensor(0.).cuda())
if (epoch - self.generator_epoch) < self.warm_epoch:
adv_loss = ls_distance(discriminator(all_fea.cuda(), self.p), 'target').cuda()
source_dann = ls_distance(discriminator(sor_img, self.p), 'source').cuda()
# calculate weighted contrastive loss
sor_img_con = fea_contrastor(sor_img)
total_contrastive_loss = Variable(torch.tensor(0.).cuda())
contrastive_label = torch.tensor([0]).cuda()
# MarginNCE
gamma = 0.07
nll = nn.NLLLoss()
if len(all_in) > 0:
for idx in range(len(all_in)):
pairs4q = self.infonce.get_posAndneg(features=sor_img_con, labels=labels, tgt_label=tgt_pre_label,
feature_q_idx=t_indx[all_in[idx]],
co_fea=all_ref_fea[all_in[idx]].cuda())
# calculate cosine similarity [-1 1]
result = self.cosine_similarity(all_ref_fea[all_in[idx]].unsqueeze(0).cuda(), pairs4q)
# MarginNCE
# softmax
numerator = torch.exp((result[0][0]) / gamma)
denominator = numerator + torch.sum(torch.exp((result / gamma)[0][1:]))
# log
result = torch.log(numerator / denominator).unsqueeze(0).unsqueeze(0)
# nll_loss
contrastive_loss = nll(result, contrastive_label) * sam_confidence[t_indx[all_in[idx]]]
total_contrastive_loss = total_contrastive_loss + contrastive_loss
total_contrastive_loss = total_contrastive_loss / len(all_in)
# obtain prototype of each class
la_tup = []
all_class_prototypes = torch.Tensor([]).cuda()
for i, lab_id in enumerate(labels):
if lab_id not in la_tup:
la_tup.append(lab_id)
all_class_prototypes = torch.cat(
(all_class_prototypes, sor_img_con[i].unsqueeze(0)))
elr_loss = Variable(torch.tensor(0.).cuda())
if len(all_in) > 0:
# calculate non-parametric prediction
similarity_output = self.cosine_similarity(all_ref_fea[all_in].cuda(), all_class_prototypes) / gamma
elr_loss = self.elr_loss(index=t_indx[all_in], output=similarity_output.cuda(),
label=torch.from_numpy(tgt_pre_label[t_indx[all_in]]).cuda(),
contrastive_loss=total_contrastive_loss, confi_weight=sam_confidence[t_indx[all_in]])
if (epoch - self.generator_epoch) < self.warm_epoch:
loss = adv_loss + source_dann
else:
loss = elr_loss + loss_nc
if loss != 0:
loss.backward()
optimizer.step()
self.lemniscate.update_weight(feat_t, t_indx)
return loss.item(), total_contrastive_loss.item()
def obtain_pseudo_label_and_confidence_weight(self, test_loader, source_net):
self.same_ind, self.confi_pre = self.obtain_label(test_loader, source_net)
pseudo_label, pseudo_label_acc, all_indx, confidence_weight = self.obtain_residue_label(test_loader, source_net,
self.confi_pre,
self.same_ind)
return pseudo_label, pseudo_label_acc, all_indx, confidence_weight
def train_prototype_generator(self, epoch, batch_size_g, num_cls, optimizer_g, generator, source_classifier, loss_gen_ce):
z = Variable(torch.rand(batch_size_g, 100)).cuda()
# Get labels ranging from 0 to n_classes for n rows
labels = Variable(torch.randint(0, num_cls, (batch_size_g,))).cuda()
z = z.contiguous()
labels = labels.contiguous()
images = generator(z, labels)
output_teacher_batch = source_classifier(images)
# One hot loss
loss_one_hot = loss_gen_ce(output_teacher_batch, labels)
if epoch >= 30:
# contrastive loss
total_contrastive_loss = torch.tensor(0.).cuda()
contrastive_label = torch.tensor([0]).cuda()
# MarginNCE
margin = 0.5
gamma = 1
nll = nn.NLLLoss()
for idx in range(images.size(0)):
pairs4q = self.gen_c.get_posAndneg(features=images, labels=labels, feature_q_idx=idx)
# 余弦相似度 [-1 1]
result = self.cosine_similarity(images[idx].unsqueeze(0), pairs4q)
numerator = torch.exp((result[0][0] - margin) / gamma)
denominator = numerator + torch.sum(torch.exp((result / gamma)[0][1:]))
# log
result = torch.log(numerator / denominator).unsqueeze(0).unsqueeze(0)
# nll_loss
contrastive_loss = nll(result, contrastive_label)
# contrastive_loss = self.criterion(result, contrastive_label)
total_contrastive_loss = total_contrastive_loss + contrastive_loss
total_contrastive_loss = total_contrastive_loss / images.size(0)
else:
total_contrastive_loss = torch.tensor(0.).cuda()
# loss of Generator
optimizer_g.zero_grad()
loss_G = loss_one_hot + total_contrastive_loss
loss_G.backward()
optimizer_g = self.exp_lr_scheduler(optimizer=optimizer_g, step=epoch)
optimizer_g.step()
def train(self):
torch.multiprocessing.set_sharing_strategy('file_system')
path = self.args.data_path
label_file = self.args.label_path
self.logger.info('original train process')
time_stamp_launch = time.strftime('%Y%m%d') + '-' + time.strftime('%H%M')
self.logger.info(path.split('/')[-2] + time_stamp_launch)
best_acc = 0
model_root = './model_' + path.split('/')[-2]
if not os.path.exists(model_root):
os.mkdir(model_root)
cuda = True
cudnn.benchmark = True
batch_size = self.args.batchsize
batch_size_g = batch_size * 2
image_size = (224, 224)
num_cls = self.args.num_class
self.generator_epoch = self.args.generator_epoch
self.warm_epoch = 10
n_epoch = self.args.max_epoch
weight_decay = 1e-6
momentum = 0.9
manual_seed = random.randint(1, 10000)
random.seed(manual_seed)
torch.manual_seed(manual_seed)
#######################
# load data #
#######################
target_train = transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomCrop((224, 224)),
transforms.RandomHorizontalFlip(),
AutoAugment(),
transforms.ToTensor(),
transforms.Normalize((0.435, 0.418, 0.396), (0.284, 0.308, 0.335)), # grayscale mean/std
])
dataset_train = visDataset_target(path, label_file, train=True, transform=target_train)
dataloader_train = torch.utils.data.DataLoader(
dataset=dataset_train,
batch_size=batch_size,
shuffle=True,
num_workers=3
)
transform_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.435, 0.418, 0.396), (0.284, 0.308, 0.335)), # grayscale mean/std
])
test_dataset = visDataset_target(path, label_file, train=True, transform=transform_test)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False,
num_workers=3)
#####################
# load model #
#####################
self.lemniscate = LinearAverage(2048, test_dataset.__len__(), 0.05, 0.00).cuda()
self.elr_loss = elr_loss(num_examp=test_dataset.__len__(), num_classes=12).cuda()
generator = generator_fea_deconv(class_num=num_cls)
discriminator = Discriminator_fea()
source_net = torch.load(self.args.source_model_path)
source_classifier = Classifier(num_classes=num_cls)
fea_contrastor = contrastor()
# load pre-trained source classifier
fc_dict = source_classifier.state_dict()
pre_dict = source_net.state_dict()
pre_dict = {k: v for k, v in pre_dict.items() if k in fc_dict}
fc_dict.update(pre_dict)
source_classifier.load_state_dict(fc_dict)
generator = DataParallel(generator, device_ids=[0, 1])
discriminator = DataParallel(discriminator, device_ids=[0, 1])
fea_contrastor = DataParallel(fea_contrastor, device_ids=[0, 1])
source_net = DataParallel(source_net, device_ids=[0, 1])
source_classifier = DataParallel(source_classifier, device_ids=[0, 1])
source_classifier.eval()
for p in generator.parameters():
p.requires_grad = True
for p in source_net.parameters():
p.requires_grad = True
# freezing the source classifier
for name, value in source_net.named_parameters():
if name[:9] == 'module.fc':
value.requires_grad = False
# setup optimizer
params = filter(lambda p: p.requires_grad, source_net.parameters())
discriminator_group = []
for k, v in discriminator.named_parameters():
discriminator_group += [{'params': v, 'lr': self.lr * 3}]
model_params = []
for v in params:
model_params += [{'params': v, 'lr': self.lr}]
contrastor_para = []
for k, v in fea_contrastor.named_parameters():
contrastor_para += [{'params': v, 'lr': self.lr * 5}]
#####################
# setup optimizer #
#####################
# only train the extractor
optimizer = optim.SGD(model_params + discriminator_group + contrastor_para, momentum=momentum, weight_decay=weight_decay)
optimizer_g = optim.SGD(generator.parameters(), lr=self.lr, momentum=momentum, weight_decay=weight_decay)
loss_gen_ce = torch.nn.CrossEntropyLoss()
if cuda:
source_net = source_net.cuda()
generator = generator.cuda()
discriminator = discriminator.cuda()
fea_contrastor = fea_contrastor.cuda()
loss_gen_ce = loss_gen_ce.cuda()
source_classifier = source_classifier.cuda()
#############################
# training network #
#############################
len_dataloader = len(dataloader_train)
self.logger.info('the step of one epoch: ' + str(len_dataloader))
current_step = 0
for epoch in range(n_epoch):
source_net.train()
discriminator.train()
fea_contrastor.train()
data_train_iter = iter(dataloader_train)
if epoch < self.generator_epoch:
generator.train()
self.train_prototype_generator(epoch, batch_size_g, num_cls, optimizer_g, generator, source_classifier, loss_gen_ce)
if epoch >= self.generator_epoch:
if epoch == self.generator_epoch:
torch.save(generator, model_root + '/generator_' +path.split('/')[-2] + '.pkl')
# prototype generation
generator.eval()
z = Variable(torch.rand(self.args.num_class*2, 100)).cuda()
# Get labels ranging from 0 to n_classes for n rows
label_t = torch.linspace(0, num_cls-1, steps=num_cls).long()
for ti in range(self.args.num_class*2//num_cls-1):
label_t = torch.cat([label_t, torch.linspace(0, num_cls-1, steps=num_cls).long()])
labels = Variable(label_t).cuda()
z = z.contiguous()
labels = labels.contiguous()
images = generator(z, labels)
self.alpha = 0.9 - (epoch - self.generator_epoch) / (n_epoch - self.generator_epoch) * 0.2
# obtain the target pseudo label and confidence weight
pseudo_label, pseudo_label_acc, all_indx, confidence_weight = self.obtain_pseudo_label_and_confidence_weight(
test_loader, source_net)
i = 0
while i < len_dataloader:
###################################
# prototype adaptation #
###################################
p = float(i + (epoch - self.generator_epoch) * len_dataloader) / (n_epoch - self.generator_epoch) / len_dataloader
self.p = 2. / (1. + np.exp(-10 * p)) - 1
data_target_train = data_train_iter.next()
s_img, s_label, s_indx = data_target_train
batch_size_s = len(s_label)
input_img_s = torch.FloatTensor(batch_size_s, 3, image_size[0], image_size[1])
class_label_s = torch.LongTensor(batch_size_s)
if cuda:
s_img = s_img.cuda()
s_label = s_label.cuda()
input_img_s = input_img_s.cuda()
class_label_s = class_label_s.cuda()
input_img_s.resize_as_(s_img).copy_(s_img)
class_label_s.resize_as_(s_label).copy_(s_label)
target_inputv_img = Variable(input_img_s)
target_classv_label = Variable(class_label_s)
# learning rate decay
optimizer = self.exp_lr_scheduler(optimizer=optimizer,
step=current_step)
loss, contrastive_loss = self.adaptation_step(target_inputv_img, pseudo_label,
images.detach(), labels,
s_indx.numpy(), source_net,
discriminator, fea_contrastor, optimizer, epoch, confidence_weight.float())
# visualization on tensorboard
self.writer.add_scalar('contrastive_loss', contrastive_loss,
global_step=current_step)
self.writer.add_scalar('overall_loss', loss, global_step=current_step)
self.writer.add_scalar('pseudo_label_acc', pseudo_label_acc,
global_step=current_step)
i += 1
current_step += 1
self.logger.info('epoch: %d' % epoch)
self.logger.info(
'contrastive_loss: %f'
% (contrastive_loss))
self.logger.info('loss: %f' % loss)
accu, ac_list = val_pclass(source_net, test_loader)
self.writer.add_scalar('test_acc', accu,
global_step=current_step)
self.logger.info(ac_list)
if accu >= best_acc:
self.logger.info('saving the best model!')
torch.save(source_net, model_root + '/' + time_stamp_launch + '_best_model_' + path.split('/')[-2] + '.pkl')
best_acc = accu
self.logger.info('acc is : %.04f, best acc is : %.04f' % (accu, best_acc))
self.logger.info('================================================')
self.logger.info('training done! ! !')