forked from sunblaze-ucb/REFIT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
232 lines (183 loc) · 8.23 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import numpy as np
import torch
from torch.autograd import Variable
from helpers.utils import progress_bar
from helpers.loaders import batch_gen
# Train function
def CrossEnt(x, y):
return (- x * torch.log(y.clamp(min=1e-7))).sum()
def IsInside(x, Y):
for y in Y:
if x is y:
return True
return False
def RandomTransform(x, device):
x = x + torch.cuda.FloatTensor(x.size()).normal_(0, 0.05)
theta = torch.zeros((x.size(0), 2, 3)).to(device)
sign = (torch.randint(0, 2, size=(x.size(0), 1, 1), dtype=torch.float) * 2 - 1).to(device)
theta[:, 0:1, 0:1] = torch.cuda.FloatTensor(x.size(0), 1, 1).normal_(1, 0.1) * sign
theta[:, 1:2, 1:2] = torch.cuda.FloatTensor(x.size(0), 1, 1).normal_(1, 0.1)
return torch.nn.functional.grid_sample(x, grid = torch.nn.functional.affine_grid(theta, x.size()))
def train(epoch, net, criterion, optimizer, logfile, loader, device, wmloader=False, tune_all=True, ex_datas = [], ex_net = None, wm2_loader = None, n_classes=None, EWC_coef = 0., Fisher = None, init_params = None, EWC_immune = [], afs_bsize=0, extra_only = False):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
train_loss_wm = 0
correct = 0
total = 0
iteration = -1
wm_correct = 0
print_every = 5
l_lambda = 1.2
# update only the last layer
if not tune_all:
if type(net) is torch.nn.DataParallel:
net.module.freeze_hidden_layers()
else:
net.freeze_hidden_layers()
# get the watermark images
wminputs, wmtargets = [], []
if wmloader:
for wm_idx, (wminput, wmtarget) in enumerate(wmloader):
wminput, wmtarget = wminput.to(device), wmtarget.to(device)
wminputs.append(wminput)
wmtargets.append(wmtarget)
# the wm_idx to start from
wm_idx = np.random.randint(len(wminputs))
if afs_bsize > 0:
afs_idx = 0
for batch_idx, (inputs, targets) in enumerate(loader):
iteration += 1
inputs, targets = inputs.to(device), targets.to(device)
# add wmimages and targets
if wmloader:
inputs = torch.cat([inputs, wminputs[(wm_idx + batch_idx) % len(wminputs)]], dim=0)
targets = torch.cat([targets, wmtargets[(wm_idx + batch_idx) % len(wminputs)]], dim=0)
if afs_bsize > 0:
inputs = torch.cat([inputs, net.afs_inputs[afs_idx:afs_idx + afs_bsize]], dim = 0)
targets = torch.cat([targets, net.afs_targets[afs_idx:afs_idx + afs_bsize]], dim=0)
afs_idx = (afs_idx + afs_bsize) % net.afs_inputs.size(0)
# add data from extra sources
original_batch_size = targets.size(0)
extra_only_tag = True
for _loader in ex_datas:
_input, _target = next(_loader)
_input, _target = _input.to(device), _target.to(device)
if _target[0].item() < -1:
with torch.no_grad():
_, __target = torch.max(ex_net(_input).data, 1)
_target = (__target + _target + 20000)%n_classes
elif _target[0].item() == -1 or ex_net!=None:
with torch.no_grad():
_output = ex_net(_input)
_, _target = torch.max(_output.data, 1)
_target = _target.to(device)
if extra_only and extra_only_tag:
inputs = _input
targets = _target
extra_only_tag = False
else:
inputs = torch.cat([inputs, _input], dim=0)
targets = torch.cat([targets, _target], dim=0)
outputs = net(inputs)
loss = criterion(outputs, targets)
if EWC_coef > 0:
for param, fisher, init_param in zip(net.parameters(), Fisher, init_params):
if IsInside(param, EWC_immune):
continue
loss = loss + (0.5 * EWC_coef * fisher.clamp(max = 1. / optimizer.param_groups[0]['lr'] / EWC_coef) * ((param - init_param)**2)).sum()
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
progress_bar(batch_idx, len(loader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss / (batch_idx + 1), 100. * float(correct) / total, correct, total))
with open(logfile, 'a') as f:
f.write('Epoch: %d\n' % epoch)
f.write('Loss: %.3f | Acc: %.3f%% (%d/%d)\n'
% (train_loss / (batch_idx + 1), 100. * float(correct) / total, correct, total))
# train function in a teacher-student fashion
def train_teacher(epoch, net, criterion, optimizer, use_cuda, logfile, loader, wmloader):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
iteration = -1
# get the watermark images
wminputs, wmtargets = [], []
if wmloader:
for wm_idx, (wminput, wmtarget) in enumerate(wmloader):
if use_cuda:
wminput, wmtarget = wminput.cuda(), wmtarget.cuda()
wminputs.append(wminput)
wmtargets.append(wmtarget)
# the wm_idx to start from
wm_idx = np.random.randint(len(wminputs))
for batch_idx, (inputs, targets) in enumerate(loader):
iteration += 1
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
if wmloader:
# add wmimages and targets
inputs = torch.cat([inputs, wminputs[(wm_idx + batch_idx) % len(wminputs)]], dim=0)
targets = torch.cat([targets, wmtargets[(wm_idx + batch_idx) % len(wminputs)]], dim=0)
inputs, targets = Variable(inputs), Variable(targets)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
progress_bar(batch_idx, len(loader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss / (batch_idx + 1), 100. * float(correct) / total, correct, total))
with open(logfile, 'a') as f:
f.write('Epoch: %d\n' % epoch)
f.write('Loss: %.3f | Acc: %.3f%% (%d/%d)\n'
% (train_loss / (batch_idx + 1), 100. * float(correct) / total, correct, total))
def test_afs(net, logfile):
net.eval()
inputs, targets = net.afs_inputs, net.afs_targets
criterion = torch.nn.CrossEntropyLoss()
with torch.no_grad():
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
loss = criterion(outputs, targets)
correct = predicted.eq(targets.data).cpu().sum()
total = inputs.size(0)
with open(logfile, 'a') as f:
f.write('Test(afw) results:\n')
print('Test(afw) results:')
f.write('Loss: %.3f | Acc: %.3f%% (%d/%d)\n'
% (loss, 100. * float(correct) / total, correct, total))
print('Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (loss, 100. * float(correct) / total, correct, total))
# Test function
def test(net, criterion, logfile, loader, device):
net.eval()
test_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(loader):
inputs, targets = inputs.to(device), targets.to(device)
with torch.no_grad():
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
loss = criterion(outputs, targets)
correct += predicted.eq(targets.data).cpu().sum()
test_loss += loss.item()
total += targets.size(0)
progress_bar(batch_idx, len(loader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss / (batch_idx + 1), 100. * float(correct) / total, correct, total))
with open(logfile, 'a') as f:
f.write('Test results:\n')
f.write('Loss: %.3f | Acc: %.3f%% (%d/%d)\n'
% (test_loss / (batch_idx + 1), 100. * float(correct) / total, correct, total))
# return the acc.
return 100. * correct / total