-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest2.py
executable file
·230 lines (185 loc) · 7.76 KB
/
test2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from autogluon.tabular import TabularDataset, TabularPredictor
import pandas as pd
import numpy as np
import sklearn
import shap
import gzip
import io
import os
import sys
import fnmatch
import pickle
import time
import seaborn as sns
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.pylab as pl
import myparams
import warnings
warnings.filterwarnings('ignore')
class AutogluonWrapper_p:
def __init__(self, predictor, feature_names):
self.ag_model = predictor
self.feature_names = feature_names
def predict(self, X):
if isinstance(X, pd.Series):
X = X.values.reshape(1,-1)
if not isinstance(X, pd.DataFrame):
X = pd.DataFrame(X, columns=self.feature_names)
# the wrapper also transforms back the output using this transformation that we imposed for the training
return np.power(10,-self.ag_model.predict(X))
class AutogluonWrapper_c:
def __init__(self, predictor, feature_names):
self.ag_model = predictor
self.feature_names = feature_names
def predict(self, X):
if isinstance(X, pd.Series):
X = X.values.reshape(1,-1)
if not isinstance(X, pd.DataFrame):
X = pd.DataFrame(X, columns=self.feature_names)
return self.ag_model.predict(X)
In_label = myparams.In_file.split('/')[-1].split('.')[0]
print('\n*** SHAP analysis for {}'.format(In_label))
try:
shapdir='./output_ML/{}'.format(In_label)
os.makedirs(shapdir)
except OSError:
pass
data_predictor = pd.read_feather('./MLmodel/predictor-training-set-{}.feather'.format(In_label))
data_classifier = pd.read_feather('./MLmodel/classifier-training-set-{}.feather'.format(In_label))
# shuffle the dataset
data_predictor = data_predictor.sample(frac=1)
data_classifier = data_classifier.sample(frac=1)
# store some particular configs to later explain better
N_configs_to_explain_indetail = 4
specific_samples_classifier = data_classifier.iloc[:N_configs_to_explain_indetail]
specific_samples_predictor = data_predictor.iloc[:N_configs_to_explain_indetail]
X_specific_samples_p = specific_samples_predictor.drop(columns=['i','j','conf','target_feature'])
Y_specific_samples_p = specific_samples_predictor['target_feature']
X_specific_samples_c = specific_samples_classifier.drop(columns=['i','j','conf','class'])
Y_specific_samples_c = specific_samples_classifier['class']
# Separate input from output
X_p = data_predictor.drop(columns=['i','j','conf','target_feature'])
Y_p = data_predictor['target_feature']
X_c = data_classifier.drop(columns=['i','j','conf','class'])
Y_c = data_classifier['class']
list_of_features_p = list(X_p.columns)
list_of_features_c = list(X_c.columns)
# Load the predictor
model_path='MLmodel/prediction-{}'.format(In_label)
predictor = TabularPredictor.load(model_path, verbosity=1)
predictor.persist_models()
# Load the classifier
model_path='MLmodel/classification-{}'.format(In_label)
classifier = TabularPredictor.load(model_path, verbosity=1)
classifier.persist_models()
# Create the AG wrappers
ag_wrapper_p = AutogluonWrapper_p(predictor, X_p.columns)
ag_wrapper_c = AutogluonWrapper_c(classifier, X_c.columns)
# Here I decide how many samples to use for the baseline
N_baseline = 3000
X_p_for_bl = X_p.iloc[0:N_baseline,:]
X_c_for_bl = X_c.iloc[0:N_baseline,:]
# and then how many for the plots
N_SHAP = 5
X_p_for_shap = X_p.iloc[N_baseline:(N_baseline+N_SHAP),:]
X_c_for_shap = X_c.iloc[N_baseline:(N_baseline+N_SHAP),:]
# ***** I calculate the SHAP parameters for the predictor
print('\n**** Calculating the shap parameters for the predictor using {} samples as baseline and {} test points'.format(N_baseline,N_SHAP))
explainer_p = shap.Explainer(ag_wrapper_p.predict, X_p_for_bl)
shap_values_p = explainer_p(X_p_for_shap)
shap_values_specific_samples_p = explainer_p(X_specific_samples_p)
# *** Feature correlation plot
fig, myax = plt.subplots(figsize=(7,7))
# create dataframe of shap
shap_df = (pd.DataFrame(shap_values_p.data, columns=X_p.columns))
corr=shap_df.corr()
kot = corr[corr>=.5]
mask = np.zeros_like(kot)
mask[np.tril_indices_from(mask)] = True
sns.heatmap(kot,mask=mask, cmap='Greens')
plt.tight_layout()
plt.savefig('%s/predictor-correlation_features.png'%(shapdir),dpi=150)
plt.close()
# *** Waterfall plot
# it tells you why a single prediction of QS was made
# I do it only for certain samples you selected before
for i,shap_i in enumerate(shap_values_specific_samples_p):
fig, myax = plt.subplots()
shap.plots.waterfall(shap_i, max_display=7,show=False)
plt.tight_layout()
plt.savefig('%s/predictor-waterfall_targetfeat%g.png'%(shapdir,Y_specific_samples_p.iloc[i]),dpi=150)
plt.close()
# *** Beeswarm plot
# it is a summary of the shap values for the most important features
fig, myax = plt.subplots()
shap.plots.beeswarm(shap_values_p, max_display=7, color=pl.get_cmap('RdYlGn_r'), log_scale=False,show=False)
plt.tight_layout()
plt.savefig('%s/predictor-beeswarm.png'%(shapdir),dpi=150)
plt.close()
# *** Partial dependence plots
# they tell you the expected target_feature given the value of a single input
plt.switch_backend('agg')
for feature in list_of_features_p:
print(' Partial dependence of %s'%feature)
fig, myax = plt.subplots()
myax.set_xscale('log')
shap.plots.partial_dependence(
feature, ag_wrapper_p.predict, X_p_for_shap, ice=False, hist=False,
model_expected_value=False, feature_expected_value=False, ax=myax, show=False
)
myax.set_xscale('log')
myax.set_ylabel('E[target | %s]'%feature)
plt.tight_layout()
plt.savefig('%s/predictor-partial_dependence_%s.png'%(shapdir,feature),dpi=150)
plt.close()
# ***** I calculate the SHAP parameters for the classifier
print('\n**** Calculating the shap parameters for the classifier using {} samples as baseline and {} test points'.format(N_baseline,N_SHAP))
explainer_c = shap.Explainer(ag_wrapper_c.predict, X_c_for_bl)
shap_values_c = explainer_c(X_c_for_shap)
shap_values_specific_samples_c = explainer_c(X_specific_samples_c)
# *** Feature correlation plot
fig, myax = plt.subplots(figsize=(7,7))
# create dataframe of shap
shap_df = (pd.DataFrame(shap_values_c.data, columns=X_c.columns))
corr=shap_df.corr()
kot = corr[corr>=.5]
mask = np.zeros_like(kot)
mask[np.tril_indices_from(mask)] = True
sns.heatmap(kot,mask=mask, cmap='Greens')
plt.tight_layout()
plt.savefig('%s/classifier-correlation_features.png'%(shapdir),dpi=150)
plt.close()
# *** Waterfall plot
# it tells you why a single prediction of QS was made
# I do it only for certain samples you selected before
for i,shap_i in enumerate(shap_values_specific_samples_c):
fig, myax = plt.subplots()
shap.plots.waterfall(shap_i, max_display=7,show=False)
plt.tight_layout()
plt.savefig('%s/classifier-waterfall_sample%d.png'%(shapdir,i),dpi=150)
plt.close()
# *** Beeswarm plot
# it is a summary of the shap values for the most important features
fig, myax = plt.subplots()
shap.plots.beeswarm(shap_values_c, max_display=7, color=pl.get_cmap('RdYlGn_r'), log_scale=False,show=False)
plt.tight_layout()
plt.savefig('%s/classifier-beeswarm.png'%(shapdir),dpi=150)
plt.close()
# *** Partial dependence plots
# they tell you the expected target_feature given the value of a single input
plt.switch_backend('agg')
for feature in list_of_features_c:
print(' Partial dependence of %s'%feature)
fig, myax = plt.subplots()
myax.set_xscale('log')
shap.plots.partial_dependence(
feature, ag_wrapper_c.predict, X_c_for_shap, ice=False, hist=False,
model_expected_value=False, feature_expected_value=False, ax=myax, show=False
)
myax.set_xscale('log')
myax.set_ylabel('E[class | %s]'%feature)
plt.tight_layout()
plt.savefig('%s/classifier-partial_dependence_%s.png'%(shapdir,feature),dpi=150)
plt.close()