-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclsdp.m
53 lines (50 loc) · 1.87 KB
/
clsdp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
% CLSDP.F - Gateway function for Loop Shaping Design of
% continuous-time systems using SLICOT routine SB10ID.
%
% Matlab call:
% [AK,BK,CK,DK,(RCOND)] = clsdp(A,B,C,D,factor)
%
% Purpose:
% To compute the matrices of the positive feedback controller
%
% | Ak | Bk |
% K = |----|----|
% | Ck | Dk |
%
% for the shaped plant
%
% | A | B |
% G = |---|---|
% | C | D |
%
% in the McFarlane/Glover Loop Shaping Design Procedure.
%
% Input parameters:
% A - the n-by-n system state matrix A.
% B - the n-by-m system input matrix B.
% C - the p-by-n system output matrix C.
% D - the p-by-m system matrix D.
% factor - = 1 implies that an optimal controller is required
% > 1 implies that a suboptimal controller is required
% achieving a performance FACTOR less than optimal.
%
% Output parameters:
% AK - the nk-by-nk controller state matrix Ak.
% BK - the nk-by-np controller input matrix Bk.
% CK - the m-by-nk controller output matrix Ck.
% DK - the m-by-np controller matrix Dk.
% RCOND - (optional) a vector containing estimates of the reciprocal
% condition numbers of the Riccati equations which have to be
% solved during the computation of the controller.
% RCOND(1) contains an estimate of the reciprocal condition
% number of the X-Riccati equation,
% RCOND(2) contains an estimate of the reciprocal condition
% number of the Z-Riccati equation.
%
% References
% [1] D.W. Gu, P.Hr. Petkov, D.W. Gu and M.M. Konstantinov.
% Hinf Loop Shaping Design procedure routines in SLICOT.
% NICONET Report 1999-15, November 1999.
% RELEASE 2.0 of SLICOT Robust Control Toolbox.
% Based on SLICOT RELEASE 5.7, Copyright (c) 2002-2020 NICONET e.V.
%