-
Notifications
You must be signed in to change notification settings - Fork 30
/
data_utils.py
271 lines (230 loc) · 11.1 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import random
import numpy as np
import torch
import torch.utils.data
import layers
from utils import load_wav_to_torch, load_filepaths_and_text
from text import text_to_sequence
from torch import nn
import os
class TextMelLoader(torch.utils.data.Dataset):
"""
1) loads audio,text pairs
2) normalizes text and converts them to sequences of one-hot vectors
3) computes mel-spectrograms from audio files.
"""
def __init__(self, audiopaths_and_text, hparams):
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
self.text_cleaners = hparams.text_cleaners
self.max_wav_value = hparams.max_wav_value
self.sampling_rate = hparams.sampling_rate
self.load_mel_from_disk = hparams.load_mel_from_disk
self.stft = layers.TacotronSTFT(
hparams.filter_length, hparams.hop_length, hparams.win_length,
hparams.n_mel_channels, hparams.sampling_rate, hparams.mel_fmin,
hparams.mel_fmax)
random.seed(1234)
random.shuffle(self.audiopaths_and_text)
def get_mel_text_pair(self, audiopath_and_text):
duration_path = os.path.join("/media/sh/DB/fsdata/alignments2", audiopath_and_text[0].split('/')[-2],
audiopath_and_text[0].split('/')[-1].split('.')[0]+".npy")
D = np.load(duration_path)
D = torch.from_numpy(D)
audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
text = self.get_text(text + " ")
mel = self.get_mel(audiopath)
return (text, mel, D)
def get_mel(self, filename):
if not self.load_mel_from_disk:
audio, sampling_rate = load_wav_to_torch(filename)
if sampling_rate != self.stft.sampling_rate:
raise ValueError("{} {} SR doesn't match target {} SR".format(
sampling_rate, self.stft.sampling_rate))
audio_norm = audio / self.max_wav_value
audio_norm = audio_norm.unsqueeze(0)
audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
melspec = self.stft.mel_spectrogram(audio_norm)
melspec = torch.squeeze(melspec, 0)
else:
melspec = torch.from_numpy(np.load(filename))
assert melspec.size(0) == self.stft.n_mel_channels, (
'Mel dimension mismatch: given {}, expected {}'.format(
melspec.size(0), self.stft.n_mel_channels))
return melspec
def get_text(self, text):
text_norm = torch.IntTensor(text_to_sequence(text, self.text_cleaners))
return text_norm
def __getitem__(self, index):
return self.get_mel_text_pair(self.audiopaths_and_text[index])
def __len__(self):
return len(self.audiopaths_and_text)
class TextMelCollate():
""" Zero-pads model inputs and targets based on number of frames per setep
"""
def __init__(self, n_frames_per_step):
self.n_frames_per_step = n_frames_per_step
def __call__(self, batch):
"""Collate's training batch from normalized text and mel-spectrogram
PARAMS
------
batch: [text_normalized, mel_normalized]
"""
# Right zero-pad all one-hot text sequences to max input length
input_lengths, ids_sorted_decreasing = torch.sort(
torch.LongTensor([len(x[0]) for x in batch]),
dim=0, descending=True)
max_input_len = input_lengths[0]
# For D (duration으로 변형된 alignment)
max_alignment_len = max_input_len
alignment_padded = torch.LongTensor(len(batch), max_alignment_len)
alignment_padded.zero_()
for i in range(len(ids_sorted_decreasing)):
alignment = batch[ids_sorted_decreasing[i]][2]
if alignment_padded[i].size(0) < alignment.size(0):
alignment_padded = None
print('duration error')
break
else:
alignment_padded[i, :alignment.size(0)] = alignment
text_padded = torch.LongTensor(len(batch), max_input_len)
text_padded.zero_()
for i in range(len(ids_sorted_decreasing)):
text = batch[ids_sorted_decreasing[i]][0]
text_padded[i, :text.size(0)] = text
# Right zero-pad mel-spec
num_mels = batch[0][1].size(0)
max_target_len = max([x[1].size(1) for x in batch])
if max_target_len % self.n_frames_per_step != 0:
max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
assert max_target_len % self.n_frames_per_step == 0
# include mel padded and gate padded
mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len)
mel_padded.zero_()
gate_padded = torch.FloatTensor(len(batch), max_target_len)
gate_padded.zero_()
output_lengths = torch.LongTensor(len(batch))
for i in range(len(ids_sorted_decreasing)):
mel = batch[ids_sorted_decreasing[i]][1]
mel_padded[i, :, :mel.size(1)] = mel
gate_padded[i, mel.size(1) - 1:] = 1
output_lengths[i] = mel.size(1)
return text_padded, input_lengths, mel_padded, gate_padded, output_lengths, alignment_padded
class TextMelCollate2():
""" Zero-pads model inputs and targets based on number of frames per setep
"""
def __init__(self, n_frames_per_step):
self.n_frames_per_step = n_frames_per_step
def __call__(self, batch):
s_token = torch.tensor([0]).int()
m_token = torch.tensor(torch.mul(torch.ones(80, 40), -10))
d_token = torch.LongTensor([40])
new_batch = [] # (text, mel, duration, attention)
for i in range(len(batch) // 2):
new_batch.append(tuple((torch.cat((batch[i][0], s_token, batch[i + 1][0]), dim=-1),
torch.cat((batch[i][1], m_token, batch[i + 1][1]), dim=-1),
torch.cat((batch[i][2], d_token, batch[i + 1][2]), dim=-1))))
"""Collate's training batch from normalized text and mel-spectrogram
PARAMS
------
batch: [text_normalized, mel_normalized]
"""
# For new batch
input_lengths2, ids_sorted_decreasing2 = torch.sort(
torch.LongTensor([len(x[0]) for x in new_batch]),
dim=0, descending=True)
max_input_len = input_lengths2[0]
max_alignment_len = max_input_len
alignment_padded = torch.LongTensor(len(new_batch), max_alignment_len)
alignment_padded.zero_()
for i in range(len(ids_sorted_decreasing2)):
alignment = new_batch[ids_sorted_decreasing2[i]][2]
if alignment_padded[i].size(0) < alignment.size(0):
alignment_padded = None
print('alignment error')
break
else:
alignment_padded[i, :alignment.size(0)] = alignment
text_padded2 = torch.LongTensor(len(new_batch), max_input_len)
text_padded2.zero_()
for i in range(len(ids_sorted_decreasing2)):
text = new_batch[ids_sorted_decreasing2[i]][0]
text_padded2[i, :text.size(0)] = text
# Right zero-pad mel-spec
num_mels = new_batch[0][1].size(0)
max_target_len = max([x[1].size(1) for x in new_batch])
if max_target_len % self.n_frames_per_step != 0:
max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
assert max_target_len % self.n_frames_per_step == 0
# include mel padded and gate padded
mel_padded2 = torch.FloatTensor(len(new_batch), num_mels, max_target_len)
mel_padded2.zero_()
gate_padded2 = torch.FloatTensor(len(new_batch), max_target_len)
gate_padded2.zero_()
output_lengths2 = torch.LongTensor(len(new_batch))
for i in range(len(ids_sorted_decreasing2)):
mel = new_batch[ids_sorted_decreasing2[i]][1]
mel_padded2[i, :, :mel.size(1)] = mel
gate_padded2[i, mel.size(1) - 1:] = 1
output_lengths2[i] = mel.size(1)
teacher_attention = None
return text_padded2, input_lengths2, mel_padded2, gate_padded2, output_lengths2, alignment_padded
class TextMelCollate3():
""" Zero-pads model inputs and targets based on number of frames per setep
"""
def __init__(self, n_frames_per_step):
self.n_frames_per_step = n_frames_per_step
def __call__(self, batch):
s_token = torch.tensor([0]).int()
m_token = torch.tensor(torch.mul(torch.ones(80, 40), -10))
d_token = torch.LongTensor([40])
new_batch = []
for i in range(len(batch) // 3):
new_batch.append(
tuple((torch.cat((batch[i][0], s_token, batch[i + 1][0], s_token, batch[i + 2][0]), dim=-1),
torch.cat((batch[i][1], m_token, batch[i + 1][1], m_token, batch[i + 2][1]), dim=-1),
torch.cat((batch[i][2], d_token, batch[i + 1][2], d_token, batch[i + 2][2]), dim=-1))))
"""Collate's training batch from normalized text and mel-spectrogram
PARAMS
------
batch: [text_normalized, mel_normalized]
"""
# For new batch
input_lengths2, ids_sorted_decreasing2 = torch.sort(
torch.LongTensor([len(x[0]) for x in new_batch]),
dim=0, descending=True)
max_input_len = input_lengths2[0]
max_alignment_len = max_input_len
alignment_padded = torch.LongTensor(len(new_batch), max_alignment_len)
alignment_padded.zero_()
for i in range(len(ids_sorted_decreasing2)):
alignment = new_batch[ids_sorted_decreasing2[i]][2]
if alignment_padded[i].size(0) < alignment.size(0):
alignment_padded = None
print('alignment error')
break
else:
alignment_padded[i, :alignment.size(0)] = alignment
text_padded2 = torch.LongTensor(len(new_batch), max_input_len)
text_padded2.zero_()
for i in range(len(ids_sorted_decreasing2)):
text = new_batch[ids_sorted_decreasing2[i]][0]
text_padded2[i, :text.size(0)] = text
# Right zero-pad mel-spec
num_mels = new_batch[0][1].size(0)
max_target_len = max([x[1].size(1) for x in new_batch])
if max_target_len % self.n_frames_per_step != 0:
max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
assert max_target_len % self.n_frames_per_step == 0
# include mel padded and gate padded
mel_padded2 = torch.FloatTensor(len(new_batch), num_mels, max_target_len)
mel_padded2.zero_()
gate_padded2 = torch.FloatTensor(len(new_batch), max_target_len)
gate_padded2.zero_()
output_lengths2 = torch.LongTensor(len(new_batch))
for i in range(len(ids_sorted_decreasing2)):
mel = new_batch[ids_sorted_decreasing2[i]][1]
mel_padded2[i, :, :mel.size(1)] = mel
gate_padded2[i, mel.size(1) - 1:] = 1
output_lengths2[i] = mel.size(1)
teacher_attention = None
return text_padded2, input_lengths2, mel_padded2, gate_padded2, output_lengths2, alignment_padded